data(api)
dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1 <- as.svrepdesign(dclus1)
svymean(~api00, rclus1)
svytotal(~enroll, rclus1)
## population marginal totals for each stratum
pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
pop.schwide <- data.frame(sch.wide=c("No","Yes"), Freq=c(1072,5122))
rclus1r <- rake(rclus1, list(~stype,~sch.wide), list(pop.types, pop.schwide))
svymean(~api00, rclus1r)
svytotal(~enroll, rclus1r)
## marginal totals correspond to population
xtabs(~stype, apipop)
svytable(~stype, rclus1r, round=TRUE)
xtabs(~sch.wide, apipop)
svytable(~sch.wide, rclus1r, round=TRUE)
## joint totals don't correspond
xtabs(~stype+sch.wide, apipop)
svytable(~stype+sch.wide, rclus1r, round=TRUE)
## Do it for a design without replicate weights
dclus1r<-rake(dclus1, list(~stype,~sch.wide), list(pop.types, pop.schwide))
svymean(~api00, dclus1r)
svytotal(~enroll, dclus1r)
## compare to raking with calibrate()
dclus1gr<-calibrate(dclus1, ~stype+sch.wide, pop=c(6194, 755,1018,5122),
calfun="raking")
svymean(~stype+api00, dclus1r)
svymean(~stype+api00, dclus1gr)
## compare to joint post-stratification
## (only possible if joint population table is known)
##
pop.table <- xtabs(~stype+sch.wide,apipop)
rclus1ps <- postStratify(rclus1, ~stype+sch.wide, pop.table)
svytable(~stype+sch.wide, rclus1ps, round=TRUE)
svymean(~api00, rclus1ps)
svytotal(~enroll, rclus1ps)
## Example of raking with partial joint distributions
pop.imp<-data.frame(comp.imp=c("No","Yes"),Freq=c(1712,4482))
dclus1r2<-rake(dclus1, list(~stype+sch.wide, ~comp.imp),
list(pop.table, pop.imp))
svymean(~api00, dclus1r2)
## compare to calibrate() syntax with tables
dclus1r2<-calibrate(dclus1, formula=list(~stype+sch.wide, ~comp.imp),
population=list(pop.table, pop.imp),calfun="raking")
svymean(~api00, dclus1r2)
Run the code above in your browser using DataLab