## two-phase simple random sampling.
data(pbc, package="survival")
pbc$randomized<-with(pbc, !is.na(trt) & trt>0)
pbc$id<-1:nrow(pbc)
d2pbc<-twophase(id=list(~id,~id), data=pbc, subset=~randomized)
svymean(~bili, d2pbc)
## two-stage sampling as two-phase
data(mu284)
ii<-with(mu284, c(1:15, rep(1:5,n2[1:5]-3)))
mu284.1<-mu284[ii,]
mu284.1$id<-1:nrow(mu284.1)
mu284.1$sub<-rep(c(TRUE,FALSE),c(15,34-15))
dmu284<-svydesign(id=~id1+id2,fpc=~n1+n2, data=mu284)
## first phase cluster sample, second phase stratified within cluster
d2mu284<-twophase(id=list(~id1,~id),strata=list(NULL,~id1),
fpc=list(~n1,NULL),data=mu284.1,subset=~sub)
svytotal(~y1, dmu284)
svytotal(~y1, d2mu284)
svymean(~y1, dmu284)
svymean(~y1, d2mu284)
## case-cohort design: this example requires R 2.2.0 or later
library("survival")
data(nwtco)
## stratified on case status
dcchs<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),
subset=~I(in.subcohort | rel), data=nwtco)
svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12), design=dcchs)
## Using survival::cch
subcoh <- nwtco$in.subcohort
selccoh <- with(nwtco, rel==1|subcoh==1)
ccoh.data <- nwtco[selccoh,]
ccoh.data$subcohort <- subcoh[selccoh]
cch(Surv(edrel, rel) ~ factor(stage) + factor(histol) + I(age/12), data =ccoh.data,
subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="LinYing")
## two-phase case-control
## Similar to Breslow & Chatterjee, Applied Statistics (1999) but with
## a slightly different version of the data set
nwtco$incc2<-as.logical(with(nwtco, ifelse(rel | instit==2,1,rbinom(nrow(nwtco),1,.1))))
dccs2<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,instit)),
data=nwtco, subset=~incc2)
dccs8<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,stage,instit)),
data=nwtco, subset=~incc2)
summary(glm(rel~factor(stage)*factor(histol),data=nwtco,family=binomial()))
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs2,family=quasibinomial()))
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs8,family=quasibinomial()))
## Stratification on stage is really post-stratification, so we should use calibrate()
gccs8<-calibrate(dccs2, phase=2, formula=~interaction(rel,stage,instit))
summary(svyglm(rel~factor(stage)*factor(histol),design=gccs8,family=quasibinomial()))
## For this saturated model calibration is equivalent to estimating weights.
pccs8<-calibrate(dccs2, phase=2,formula=~interaction(rel,stage,instit), calfun="rrz")
summary(svyglm(rel~factor(stage)*factor(histol),design=pccs8,family=quasibinomial()))
## Since sampling is SRS at phase 1 and stratified RS at phase 2, we
## can use method="simple" to save memory.
dccs8_simple<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,stage,instit)),
data=nwtco, subset=~incc2,method="simple")
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs8_simple,family=quasibinomial()))
Run the code above in your browser using DataLab