# Fit a model to the lung cancer data set
lfit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung,
nmin=1)
lfit
Call:
aareg(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, nmin = 1
)
n=227 (1 observations deleted due to missing values)
138 out of 138 unique event times used
slope coef se(coef) z p
Intercept 5.26e-03 5.99e-03 4.74e-03 1.26 0.207000
age 4.26e-05 7.02e-05 7.23e-05 0.97 0.332000
sex -3.29e-03 -4.02e-03 1.22e-03 -3.30 0.000976
ph.ecog 3.14e-03 3.80e-03 1.03e-03 3.70 0.000214
Chisq=26.73 on 3 df, p=6.7e-06; test weights=aalen
plot(lfit[4], ylim=c(-4,4)) # Draw a plot of the function for ph.ecog
lfit2 <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung,
nmin=1, taper=1:10)
lines(lfit2[4], col=2) # Nearly the same, until the last point
# A fit to the mulitple-infection data set of children with
# Chronic Granuomatous Disease. See section 8.5 of Therneau and Grambsch.
fita2 <- aareg(Surv(tstart, tstop, status) ~ treat + age + inherit +
steroids + cluster(id), data=cgd)
n= 203
69 out of 70 unique event times used
slope coef se(coef) robust se z p
Intercept 0.004670 0.017800 0.002780 0.003910 4.55 5.30e-06
treatrIFN-g -0.002520 -0.010100 0.002290 0.003020 -3.36 7.87e-04
age -0.000101 -0.000317 0.000115 0.000117 -2.70 6.84e-03
inheritautosomal 0.001330 0.003830 0.002800 0.002420 1.58 1.14e-01
steroids 0.004620 0.013200 0.010600 0.009700 1.36 1.73e-01
Chisq=16.74 on 4 df, p=0.0022; test weights=aalen
Run the code above in your browser using DataLab