# Create the simplest test data set
test1 <- list(time=c(4,3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x=c(0,2,1,1,1,0,0),
sex=c(0,0,0,0,1,1,1))
# Fit a stratified model
coxph(Surv(time, status) ~ x + strata(sex), test1)
# Create a simple data set for a time-dependent model
test2 <- list(start=c(1,2,5,2,1,7,3,4,8,8),
stop=c(2,3,6,7,8,9,9,9,14,17),
event=c(1,1,1,1,1,1,1,0,0,0),
x=c(1,0,0,1,0,1,1,1,0,0))
summary(coxph(Surv(start, stop, event) ~ x, test2))
#
# Create a simple data set for a time-dependent model
#
test2 <- list(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8),
stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17),
event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0),
x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) )
summary( coxph( Surv(start, stop, event) ~ x, test2))
# Fit a stratified model, clustered on patients
bladder1 <- bladder[bladder$enum < 5, ]
coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum) +
cluster(id), bladder1)
# Fit a time transform model using current age
coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung,
tt=function(x,t,...) pspline(x + t/365.25))
Run the code above in your browser using DataLab