#fit a Kaplan-Meier and plot it
fit <- survfit(Surv(time, status) ~ x, data = aml)
plot(fit, lty = 2:3)
legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
#fit a Cox proportional hazards model and plot the
#predicted survival for a 60 year old
fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)
plot(survfit(fit, newdata=data.frame(age=60)),
xscale=365.25, xlab = "Years", ylab="Survival")
# Here is the data set from Turnbull
# There are no interval censored subjects, only left-censored (status=3),
# right-censored (status 0) and observed events (status 1)
#
# Time
# 1 2 3 4
# Type of observation
# death 12 6 2 3
# losses 3 2 0 3
# late entry 2 4 2 5
#
tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4),
status=rep(c(1,0,2),4),
n =c(12,3,2,6,2,4,2,0,2,3,3,5))
fit <- survfit(Surv(time, time, status, type='interval') ~1,
data=tdata, weight=n)
#
# Time to progression/death for patients with monoclonal gammopathy
# Competing risk curves (cumulative incidence)
fit1 <- survfit(Surv(stop, event=='progression') ~1, data=mgus1,
subset=(start==0))
fit2 <- survfit(Surv(stop, status) ~1, data=mgus1,
subset=(start==0), etype=event) #competing risks
# CI curves are always plotted from 0 upwards, rather than 1 down
plot(fit2, fun='event', xscale=365.25, xmax=7300, mark.time=FALSE,
col=2:3, xlab="Years post diagnosis of MGUS")
lines(fit1, fun='event', xscale=365.25, xmax=7300, mark.time=FALSE,
conf.int=FALSE)
text(10, .4, "Competing Risk: death", col=3)
text(16, .15,"Competing Risk: progression", col=2)
text(15, .30,"KM:prog")
Run the code above in your browser using DataLab