# NOT RUN {
# Look at progression rates jointly by calendar date and age
#
temp.yr <- tcut(mgus$dxyr, 55:92, labels=as.character(55:91))
temp.age <- tcut(mgus$age, 34:101, labels=as.character(34:100))
ptime <- ifelse(is.na(mgus$pctime), mgus$futime, mgus$pctime)
pstat <- ifelse(is.na(mgus$pctime), 0, 1)
pfit <- pyears(Surv(ptime/365.25, pstat) ~ temp.yr + temp.age + sex, mgus,
data.frame=TRUE)
# Turn the factor back into numerics for regression
tdata <- pfit$data
tdata$age <- as.numeric(as.character(tdata$temp.age))
tdata$year<- as.numeric(as.character(tdata$temp.yr))
fit1 <- glm(event ~ year + age+ sex +offset(log(pyears)),
data=tdata, family=poisson)
# }
# NOT RUN {
# fit a gam model
gfit.m <- gam(y ~ s(age) + s(year) + offset(log(time)),
family = poisson, data = tdata)
# }
# NOT RUN {
# Example #2 Create the hearta data frame:
hearta <- by(heart, heart$id,
function(x)x[x$stop == max(x$stop),])
hearta <- do.call("rbind", hearta)
# Produce pyears table of death rates on the surgical arm
# The first is by age at randomization, the second by current age
fit1 <- pyears(Surv(stop/365.25, event) ~ cut(age + 48, c(0,50,60,70,100)) +
surgery, data = hearta, scale = 1)
fit2 <- pyears(Surv(stop/365.25, event) ~ tcut(age + 48, c(0,50,60,70,100)) +
surgery, data = hearta, scale = 1)
fit1$event/fit1$pyears #death rates on the surgery and non-surg arm
fit2$event/fit2$pyears #death rates on the surgery and non-surg arm
# }
Run the code above in your browser using DataLab