# NOT RUN {
library(survival)
fit2 <- coxph( Surv(stop, event) ~ size, data = bladder )
# single curve
ggadjustedcurves(fit2, data = bladder)
fit2 <- coxph( Surv(stop, event) ~ size + strata(rx), data = bladder )
# average in groups
ggadjustedcurves(fit2, data = bladder, method = "average", variable = "rx")
# conditional balancing in groups
ggadjustedcurves(fit2, data = bladder, method = "conditional", variable = "rx")
# selected reference population
ggadjustedcurves(fit2, data = bladder, method = "conditional", variable = "rx",
reference = bladder[bladder$rx == "1",])
# marginal balancing in groups
ggadjustedcurves(fit2, data = bladder, method = "marginal", variable = "rx")
# }
# NOT RUN {
# this will take some time
fdata <- flchain[flchain$futime >=7,]
fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110),
labels = c(paste(c(50,55,60,65,70,75,80),
c(54,59,64,69,74,79,89), sep='-'), "90+"))
fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9),
levels=1:3,
labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"))
# single curve
fit <- coxph( Surv(futime, death) ~ age*sex, data = fdata)
ggadjustedcurves(fit, data = fdata, method = "single")
# average in groups
fit <- coxph( Surv(futime, death) ~ age*sex + strata(group), data = fdata)
ggadjustedcurves(fit, data = fdata, method = "average")
# conditional balancing in groups
ggadjustedcurves(fit, data = fdata, method = "conditional", reference = fdata)
# marginal balancing in groups
ggadjustedcurves(fit, data = fdata, method = "marginal")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab