The package sybil is a collection of functions designed for in silico analysis---in particular constrained based analysis---of metabolic networks.
The package sybil is designed to read metabolic networks from csv files.
This is done by the function readTSVmod
. The function returns
an object of the class '>modelorg
.
Read csv files (example files included):
mpath <- system.file(package = "sybil", "extdata") model <- readTSVmod(prefix = "Ec_core", fpath = mpath, quote = "\"")
Perform flux balance analysis (FBA):
ec_f <- optimizeProb(model)
Perform single gene deletion analysis:
ec_g <- oneGeneDel(model)
Plot the values of the objective function after optimization in a
histogram:
plot(ec_g)
Perform flux variability analysis:
ec_v <- fluxVar(model)
Plot the result:
plot(ec_v)
Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., and Lercher, M. J. (2013). sybil -- Efficient constraint-based modelling in R. BMC Systems Biology 7, 125.
The BiGG database http://bigg.ucsd.edu/.
Schellenberger, J., Park, J. O., Conrad, T. C., and Palsson, B. <U+00D8>., (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11, 213.
The openCOBRA project https://opencobra.github.io/.
Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. <U+00D8>. and Herrgard, M. J. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2, 727--738.
Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R. and Palsson, B. <U+00D8>. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290--1307.
Package sybilSBML and there the function readSBMLmod
to read
metabolic models written in SBML language.
# NOT RUN {
data(Ec_core)
Ec_ofd <- oneGeneDel(Ec_core)
plot(Ec_ofd)
# }
Run the code above in your browser using DataLab