Learn R Programming

symbolicDA (version 0.7-1)

random.forest.SDA: Random forest algorithm for optimal split based decision tree for symbolic objects

Description

Random forest algorithm for optimal split based decision tree for symbolic objects

Usage

random.forest.SDA(sdt,formula,testSet, mfinal = 100,...)

Value

Section details goes here

Arguments

sdt

Symbolic data table

formula

formula as in ln function

testSet

a vector of integers indicating classes to which each objects are allocated in learnig set

mfinal

number of partial models generated

...

arguments passed to decisionTree.SDA function

Author

Andrzej Dudek andrzej.dudek@ue.wroc.pl Marcin Pełka marcin.pelka@ue.wroc.pl

Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland http://keii.ue.wroc.pl/symbolicDA/

Details

random.forest.SDA implements Breiman's random forest algorithm for classification of symbolic data set.

References

Billard L., Diday E. (eds.) (2006), Symbolic Data Analysis, Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.

Bock H.H., Diday E. (eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.

Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.

See Also

bagging.SDA,boosting.SDA,decisionTree.SDA

Examples

Run this code
# Example will be available in next version of package, thank You for your patience :-)

Run the code above in your browser using DataLab