Replication analysis for cluster validation of symbolic data
replication.SDA(table.Symbolic, u=2, method="SClust", S=10, fixedAsample=NULL, ...)
3-dimensional array containing data matrices for A sample of objects in each simulation (first dimension represents simulation number, second - object number, third - variable number)
3-dimensional array containing data matrices for B sample of objects in each simulation (first dimension represents simulation number, second - object number, third - variable number)
3-dimensional array containing matrices of observations on u representative objects (medoids) for A sample of objects in each simulation (first dimension represents simulation number, second - cluster number, third - variable number)
2-dimensional array containing cluster numbers for A sample of objects in each simulation (first dimension represents simulation number, second - object number)
2-dimensional array containing cluster numbers for B sample of objects in each simulation (first dimension represents simulation number, second - object number)
2-dimensional array containing cluster numbers for B sample of objects in each simulation according to 4 step of replication analysis procedure (first dimension represents simulation number, second - object number)
value of average adjusted Rand index for S simulations
symbolic data table
number of clusters given arbitrarily
clustering method: "SClust" (default), "DClust", "single", "complete", "average", "mcquitty", "median", "centroid", "ward", "pam", "diana"
the number of simulations used to compute average adjusted Rand index
if NULL A sample is generated randomly, otherwise this parameter contains object numbers arbitrarily assigned to A sample
additional argument passed to dist_SDA
function
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk justyna.wilk@ue.wroc.pl Department of Econometrics and Computer Science,Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA/
See file ../doc/replicationSDA_details.pdf for further details
Breckenridge, J.N. (2000), Validating cluster analysis: consistent replication and symmetry, "Multivariate Behavioral Research", 35 (2), 261-285. Available at: tools:::Rd_expr_doi("10.1207/S15327906MBR3502_5").
Gordon, A.D. (1999), Classification, Chapman and Hall/CRC, London. ISBN 9781584880134.
Hubert, L., Arabie, P. (1985), Comparing partitions, "Journal of Classification", no. 1, 193-218. Available at: tools:::Rd_expr_doi("10.1007/BF01908075").
Milligan, G.W. (1996), Clustering validation: results and implications for applied analyses, In P. Arabie, L.J. Hubert, G. de Soete (Eds.), Clustering and classification, World Scientific, Singapore, 341-375. ISBN 9789810212872.
Bock H.H., Diday E. (eds.) (2000), Analysis of Symbolic Data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.
Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.
dist_SDA
, SClust
, DClust
; hclust
in stats
library; pam
in cluster
library; replication.Mod
in clusterSim
library
#data("cars",package="symbolicDA")
#set.seed(123)
#w<-replication.SDA(cars, u=3, method="SClust", S=10)
#print(w)
Run the code above in your browser using DataLab