Learn R Programming

systemfit (version 0.5-6)

sur: Seemingly Unrelated Regressions Estimation

Description

Fits a set of structural equations using Seemingly Unrelated Regressions. The resulting object is an array of fitting regression equations that contain information about the fitting process as well as the resulting parameter estimates, standard error estimates and covaraince matrix.

Usage

sur.systemfit( eqns, instruments, eqnlabels, data )

Arguments

eqns
a list of structural equations to be estimated; a regression constant is implied if not explicitly omitted.
instruments
one-sided model formula specifying instrumental variables. Instrument variables are not used in this case.
data
an optional data frame containing the variables in the model. By default the variables are taken from the environment from which sur is called.
eqnlabels
list of character vectors of names for the equation labels.

Value

  • sur returns a list of objects of class sur, with the following components:
  • nnumber of observations.
  • pnumber of parameters.
  • coefficientsparameter estimates.
  • Vestimated covariance matrix of coefficients.
  • sresidual standard error.
  • residualsvector of residuals.
  • responsevector of response values.
  • Xmodel matrix.
  • response.namename of response variable, or expression evaluating to response.
  • formulamodel formula.
  • methodestimation method for the object, in this case, "SUR".
  • eqnlabelthe equation label from the labels list for the equation.
  • formulamodel formula.
  • dfeerror degrees of freedom.
  • dfmmodel degrees of freedom.
  • model.matrixmodel matrix for the ith equation
  • model.framemodel frame for the ith equation
  • instrumentslist of instruments for the set of equations.
  • responsey
  • predictedpredicted values
  • residualsresiduals
  • vv
  • bparameter estimates
  • nnumber of observations for the ith equation
  • sestimation of sigma
  • ssesum of squares
  • msemean squared error
  • rmsesquare root of mse or root mean squared error
  • seestimates standard errors of the parameter estimates.
  • tt values for b
  • pp values for b
  • r2r2
  • adjr2adjusted r-squared
  • covbcovb
  • se.predictionstandard error of the predicted values
  • prediction.limitslower and upper 95 percent prediction limits
  • confidence.limitslower and upper 95 percent confidence limits

References

Greene, W. H. (1993) Econometric Analysis, Second Edition, Macmillan. Kmenta, J. (1997) Elements of Econometrics, Second Edition, University of Michigan Publishing

See Also

ols,twostage,surand threestage

Examples

Run this code
library( systemfit )

data( kmenta )
attach( kmenta )
demand <- q ~ p + d
supply <- q ~ p + f + a
inst <- ~ d + f + a
labels <- list( "demand", "supply" )
system <- list( demand, supply )

## perform SUR on each of the equations in the system
fitsur <- sur.systemfit( system, inst, labels, kmenta )
print( fitsur )
print( "covariance of residuals" )
print( varcov.systemfit( fitsur ) )

Run the code above in your browser using DataLab