McIntosh Dominance Index.
index_mcintosh(x, ...)# S4 method for numeric
index_mcintosh(x, evenness = FALSE, na.rm = FALSE, ...)
A numeric vector.
N. Frerebeau
The McIntosh index expresses the heterogeneity of a sample in geometric terms. It describes the sample as a point of a \(S\)-dimensional hypervolume and uses the Euclidean distance of this point from the origin.
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain Concepts to Diversity. Ecology, 48(3), 392-404. tools:::Rd_expr_doi("10.2307/1932674").
Other alpha diversity measures:
index_ace(),
index_baxter(),
index_berger(),
index_boone(),
index_brillouin(),
index_chao1(),
index_chao2(),
index_hurlbert(),
index_ice(),
index_margalef(),
index_menhinick(),
index_shannon(),
index_simpson(),
index_squares(),
observed()