McIntosh Dominance Index.
index_mcintosh(x, ...)# S4 method for numeric
index_mcintosh(x, evenness = FALSE, na.rm = FALSE, ...)
A numeric
vector.
N. Frerebeau
The McIntosh index expresses the heterogeneity of a sample in geometric terms. It describes the sample as a point of a \(S\)-dimensional hypervolume and uses the Euclidean distance of this point from the origin.
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain Concepts to Diversity. Ecology, 48(3), 392-404. tools:::Rd_expr_doi("10.2307/1932674").
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_menhinick()
,
index_shannon()
,
index_simpson()
,
index_squares()
,
observed()