Simpson Dominance Index
index_simpson(x, ...)# S4 method for numeric
index_simpson(x, evenness = FALSE, unbiased = FALSE, na.rm = FALSE, ...)
A numeric
vector.
N. Frerebeau
The Simpson index expresses the probability that two individuals randomly picked from a finite sample belong to two different types. It can be interpreted as the weighted mean of the proportional abundances. This metric is a true probability value, it ranges from \(0\) (all taxa are equally present) to \(1\) (one taxon dominates the community completely).
This is a dominance index, so that an increase in the value of the index accompanies a decrease in diversity.
Simpson, E. H. (1949). Measurement of Diversity. Nature, 163(4148), 688-688. tools:::Rd_expr_doi("10.1038/163688a0").
Other alpha diversity measures:
index_ace()
,
index_baxter()
,
index_berger()
,
index_boone()
,
index_brillouin()
,
index_chao1()
,
index_chao2()
,
index_hurlbert()
,
index_ice()
,
index_margalef()
,
index_mcintosh()
,
index_menhinick()
,
index_shannon()
,
index_squares()
,
observed()