Information approach to repertoire analysis. Function entropy.seg
applies Shannon entropy to V-usage and hence measures variability of V-usage.
Function js.div.seg
applied Jensen-Shannon divergence to V-usage of two or more data frames and hence measures distance among this V-usages.
entropy.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'),
.quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"),
.ambig = F)js.div.seg(.data, .genes = HUMAN_TRBV, .frame = c('all', 'in', 'out'),
.quant = c(NA, "read.count", "umi.count", "read.prop", "umi.prop"),
.norm.entropy = T, .ambig = F, .verbose = F, .data2 = NULL)
Mitcr data.frame or a list with mitcr data.frames.
Parameter to the geneUsage
function.
Character vector of length 1 specified which *-frames should be used: only in-frame ('in'), out-of-frame ('out') or all sequences ('all').
Which column to use for the quantity of clonotypes: NA for computing only number of genes without using clonotype counts, "read.count" for the "Read.count" column, "umi.count" for the "Umi.count" column, "read.prop" for the "Read.proportion" column, "umi.prop" for the "Umi.proportion" column.
Parameter passed to geneUsage
.
NULL if .data is a list, or a second mitcr data.frame.
if T then divide result by mean entropy of 2 segments' frequencies.
If T than output the data processing progress bar.
For entropy.seg
- numeric integer with entropy value(s). For js.div.seg
- integer of vector one if .data
and .data2
are provided;
esle matrix length(.data) X length(.data) if .data
is a list.