top.cross
- get top crosses of the given type between each pair of the given data.frames with top.cross
function.
top.cross.vec
- get vector of cross values for each top with the top.cross.vec
function.
top.cross.plot
- plot a plots with result with the top.cross.plot
function.
top.cross(.data, .n = NA, .data2 = NULL, .type = 'ave', .norm = F, .verbose = T)top.cross.vec(.top.cross.res, .i, .j)
top.cross.plot(.top.cross.res, .xlab = 'Top X clonotypes',
.ylab = 'Normalised number of shared clonotypes', .nrow = 2,
.legend.ncol = 1, .logx = T, .logy = T)
Either list of data.frames or a data.frame.
Integer vector of parameter appled to the head function; same as .n in the top.fun function. See "Details" for more information.
Second data.frame or NULL if .data is a list.
Parameter .type to the tcR::intersect
function.
Parameter .norm to the tcR::intersect
function.
if T then plot a progress bar.
Result from the top.cross
function.
Coordinate of a cell in each matrix.
Name for a x-lab.
Name for a y-lab.
Number of rows of sub-plots in the output plot.
Number of columns in the output legend.
if T then transform x-axis to log-scale.
if T then transform y-axis to log-scale.
top.cross
- return list for each element in .n
with intersection matrix (from tcR::intersectClonesets
).
top.cross.vec
- vector of length .n
with .i
:.j
elements of each matrix.
top.cross.plot
- grid / ggplot object.
Parameter .n
can have two possible values. It could be either integer vector of numbers (same as in the top.fun
function) or
NA and then it will be replaced internally by the value .n <- seq(5000, min(sapply(.data, nrow)), 5000)
.
# NOT RUN {
immdata.top <- top.cross(immdata)
top.cross.plot(immdata.top)
# }
Run the code above in your browser using DataLab