## 1. randindex with the contingency table as input.
T <- matrix(c(1, 1, 0, 1, 2, 1, 0, 0, 4), nrow=3)
(ARI <- randIndex(T))
## 2. randindex with the two vectors as input.
c <- matrix(c(1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3), ncol=2, byrow=TRUE)
## c1 = numeric vector containing the labels of the first partition
c1 <- c[,1]
## c2 = numeric vector containing the labels of the second partition
c2 <- c[,2]
(ARI <- randIndex(c1,c2))
## 3. Compare ARI for iris data (true classification against tclust classification)
library(tclust)
c1 <- iris$Species # first partition c1 is the true partition
out <- tclust(iris[, 1:4], k=3, alpha=0, restr.fact=100)
c2 <- out$cluster # second partition c2 is the output of tclust clustering procedure
randIndex(c1,c2)
## 4. Compare ARI for iris data (exclude unassigned units from tclust).
c1 <- iris$Species # first partition c1 is the true partition
out <- tclust(iris[,1:4], k=3, alpha=0.1, restr.fact=100)
c2 <- out$cluster # second partition c2 is the output of tclust clustering procedure
## Units inside c2 which contain number 0 are referred to trimmed observations
noisecluster <- 0
randIndex(c1, c2, noisecluster=0)
Run the code above in your browser using DataLab