# Creating a new join keys ----
jk <- join_keys(
join_key("ds1", "ds1", "pk1"),
join_key("ds2", "ds2", "pk2"),
join_key("ds3", "ds3", "pk3"),
join_key("ds1", "ds2", c(pk1 = "pk2")),
join_key("ds1", "ds3", c(pk1 = "pk3"))
)
jk
# Getter for join_keys ---
jk["ds1", "ds2"]
# Subsetting join_keys ----
jk["ds1"]
jk[1:2]
jk[c("ds1", "ds2")]
# Setting a new primary key ---
jk["ds4", "ds4"] <- "pk4"
jk["ds5", "ds5"] <- "pk5"
# Setting a single relationship pair ---
jk["ds1", "ds4"] <- c("pk1" = "pk4")
# Removing a key ---
jk["ds5", "ds5"] <- NULL
# Merging multiple `join_keys` objects ---
jk_merged <- c(
jk,
join_keys(
join_key("ds4", keys = c("pk4", "pk4_2")),
join_key("ds3", "ds4", c(pk3 = "pk4_2"))
)
)
# note: merge can be performed with both join_keys and join_key_set
jk_merged <- c(
jk_merged,
join_key("ds5", keys = "pk5"),
join_key("ds1", "ds5", c(pk1 = "pk5"))
)
# Assigning keys via join_keys(x)[i, j] <- value ----
obj <- join_keys()
# or
obj <- teal_data()
join_keys(obj)["ds1", "ds1"] <- "pk1"
join_keys(obj)["ds2", "ds2"] <- "pk2"
join_keys(obj)["ds3", "ds3"] <- "pk3"
join_keys(obj)["ds1", "ds2"] <- c(pk1 = "pk2")
join_keys(obj)["ds1", "ds3"] <- c(pk1 = "pk3")
identical(jk, join_keys(obj))
# Setter for join_keys within teal_data ----
td <- teal_data()
join_keys(td) <- jk
join_keys(td)["ds1", "ds2"] <- "new_key"
join_keys(td) <- c(join_keys(td), join_keys(join_key("ds3", "ds2", "key3")))
join_keys(td)
Run the code above in your browser using DataLab