library(dplyr)
# Data preparation
adpp <- tern_ex_adpp %>% h_pkparam_sort()
lyt <- basic_table() %>%
split_rows_by(var = "STRATA1", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_labels = "hidden"
) %>% # Removes duplicated labels
analyze_vars_in_cols(vars = "AGE")
result <- build_table(lyt = lyt, df = adpp)
result
# By selecting just some statistics and ad-hoc labels
lyt <- basic_table() %>%
split_rows_by(var = "ARM", label_pos = "topleft") %>%
split_rows_by(
var = "SEX",
label_pos = "topleft",
child_labels = "hidden",
split_fun = drop_split_levels
) %>%
analyze_vars_in_cols(
vars = "AGE",
.stats = c("n", "cv", "geom_mean"),
.labels = c(
n = "aN",
cv = "aCV",
geom_mean = "aGeomMean"
)
)
result <- build_table(lyt = lyt, df = adpp)
result
# Changing row labels
lyt <- basic_table() %>%
analyze_vars_in_cols(
vars = "AGE",
row_labels = "some custom label"
)
result <- build_table(lyt, df = adpp)
result
# Pharmacokinetic parameters
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft",
child_labels = "hidden"
) %>%
analyze_vars_in_cols(
vars = "AVAL"
)
result <- build_table(lyt, df = adpp)
result
# Multiple calls (summarize label and analyze underneath)
lyt <- basic_table() %>%
split_rows_by(
var = "TLG_DISPLAY",
split_label = "PK Parameter",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
do_summarize_row_groups = TRUE # does a summarize level
) %>%
split_rows_by("SEX",
child_labels = "hidden",
label_pos = "topleft"
) %>%
analyze_vars_in_cols(
vars = "AVAL",
split_col_vars = FALSE # avoids re-splitting the columns
)
result <- build_table(lyt, df = adpp)
result
Run the code above in your browser using DataLab