library(survival)
set.seed(1, kind = "Mersenne-Twister")
# Testing dataset [survival::bladder].
dta_bladder <- with(
data = bladder[bladder$enum < 5, ],
data.frame(
time = stop,
status = event,
armcd = as.factor(rx),
covar1 = as.factor(enum),
covar2 = factor(
sample(as.factor(enum)),
levels = 1:4,
labels = c("F", "F", "M", "M")
)
)
)
labels <- c("armcd" = "ARM", "covar1" = "A Covariate Label", "covar2" = "Sex (F/M)")
formatters::var_labels(dta_bladder)[names(labels)] <- labels
dta_bladder$age <- sample(20:60, size = nrow(dta_bladder), replace = TRUE)
plot(
survfit(Surv(time, status) ~ armcd + covar1, data = dta_bladder),
lty = 2:4,
xlab = "Months",
col = c("blue1", "blue2", "blue3", "blue4", "red1", "red2", "red3", "red4")
)
mod <- coxph(Surv(time, status) ~ armcd * covar1, data = dta_bladder)
h_coxreg_extract_interaction(
mod = mod, effect = "armcd", covar = "covar1", data = dta_bladder,
control = control_coxreg()
)
mod <- coxph(Surv(time, status) ~ armcd * covar1, data = dta_bladder)
result <- h_coxreg_inter_estimations(
variable = "armcd", given = "covar1",
lvl_var = levels(dta_bladder$armcd),
lvl_given = levels(dta_bladder$covar1),
mod = mod, conf_level = .95
)
result
Run the code above in your browser using DataLab