library(dplyr)
library(forcats)
adrs <- tern_ex_adrs
adrs_labels <- formatters::var_labels(adrs)
adrs_f <- adrs %>%
filter(PARAMCD == "BESRSPI") %>%
filter(ARM %in% c("A: Drug X", "B: Placebo")) %>%
droplevels() %>%
mutate(
# Reorder levels of factor to make the placebo group the reference arm.
ARM = fct_relevel(ARM, "B: Placebo"),
rsp = AVALC == "CR"
)
formatters::var_labels(adrs_f) <- c(adrs_labels, "Response")
h_proportion_df(
c(TRUE, FALSE, FALSE),
arm = factor(c("A", "A", "B"), levels = c("A", "B"))
)
h_proportion_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f
)
# Define groupings for BMRKR2 levels.
h_proportion_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
# Unstratatified analysis.
h_odds_ratio_df(
c(TRUE, FALSE, FALSE, TRUE),
arm = factor(c("A", "A", "B", "B"), levels = c("A", "B"))
)
# Include p-value.
h_odds_ratio_df(adrs_f$rsp, adrs_f$ARM, method = "chisq")
# Stratatified analysis.
h_odds_ratio_df(
rsp = adrs_f$rsp,
arm = adrs_f$ARM,
strata_data = adrs_f[, c("STRATA1", "STRATA2")],
method = "cmh"
)
# Unstratified analysis.
h_odds_ratio_subgroups_df(
variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
data = adrs_f
)
# Stratified analysis.
h_odds_ratio_subgroups_df(
variables = list(
rsp = "rsp",
arm = "ARM",
subgroups = c("SEX", "BMRKR2"),
strata = c("STRATA1", "STRATA2")
),
data = adrs_f
)
# Define groupings of BMRKR2 levels.
h_odds_ratio_subgroups_df(
variables = list(
rsp = "rsp",
arm = "ARM",
subgroups = c("SEX", "BMRKR2")
),
data = adrs_f,
groups_lists = list(
BMRKR2 = list(
"low" = "LOW",
"low/medium" = c("LOW", "MEDIUM"),
"low/medium/high" = c("LOW", "MEDIUM", "HIGH")
)
)
)
Run the code above in your browser using DataLab