library(dplyr)
library(broom)
adrs_f <- tern_ex_adrs %>%
filter(PARAMCD == "BESRSPI") %>%
filter(RACE %in% c("ASIAN", "WHITE", "BLACK OR AFRICAN AMERICAN")) %>%
mutate(
Response = case_when(AVALC %in% c("PR", "CR") ~ 1, TRUE ~ 0),
RACE = factor(RACE),
SEX = factor(SEX)
)
formatters::var_labels(adrs_f) <- c(formatters::var_labels(tern_ex_adrs), Response = "Response")
mod1 <- fit_logistic(
data = adrs_f,
variables = list(
response = "Response",
arm = "ARMCD",
covariates = c("AGE", "RACE")
)
)
mod2 <- fit_logistic(
data = adrs_f,
variables = list(
response = "Response",
arm = "ARMCD",
covariates = c("AGE", "RACE"),
interaction = "AGE"
)
)
df <- tidy(mod1, conf_level = 0.99)
df2 <- tidy(mod2, conf_level = 0.99)
# flagging empty strings with "_"
df <- df_explicit_na(df, na_level = "_")
df2 <- df_explicit_na(df2, na_level = "_")
result1 <- basic_table() %>%
summarize_logistic(
conf_level = 0.95,
drop_and_remove_str = "_"
) %>%
build_table(df = df)
result1
result2 <- basic_table() %>%
summarize_logistic(
conf_level = 0.95,
drop_and_remove_str = "_"
) %>%
build_table(df = df2)
result2
Run the code above in your browser using DataLab