library(dplyr)
adtte <- tern_ex_adtte
# Save variable labels before data processing steps.
adtte_labels <- formatters::var_labels(adtte)
adtte_f <- adtte %>%
  filter(PARAMCD == "OS") %>%
  mutate(
    AVALU = as.character(AVALU),
    is_event = CNSR == 0
  )
labels <- c("AVALU" = adtte_labels[["AVALU"]], "is_event" = "Event Flag")
formatters::var_labels(adtte_f)[names(labels)] <- labels
# Typical analysis of two continuous biomarkers `BMRKR1` and `AGE`,
# in multiple regression models containing one covariate `RACE`,
# as well as one stratification variable `STRATA1`. The subgroups
# are defined by the levels of `BMRKR2`.
df <- extract_survival_biomarkers(
  variables = list(
    tte = "AVAL",
    is_event = "is_event",
    biomarkers = c("BMRKR1", "AGE"),
    strata = "STRATA1",
    covariates = "SEX",
    subgroups = "BMRKR2"
  ),
  label_all = "Total Patients",
  data = adtte_f
)
df
# Here we group the levels of `BMRKR2` manually.
df_grouped <- extract_survival_biomarkers(
  variables = list(
    tte = "AVAL",
    is_event = "is_event",
    biomarkers = c("BMRKR1", "AGE"),
    strata = "STRATA1",
    covariates = "SEX",
    subgroups = "BMRKR2"
  ),
  data = adtte_f,
  groups_lists = list(
    BMRKR2 = list(
      "low" = "LOW",
      "low/medium" = c("LOW", "MEDIUM"),
      "low/medium/high" = c("LOW", "MEDIUM", "HIGH")
    )
  )
)
df_grouped
## Table with default columns.
tabulate_survival_biomarkers(df)
## Table with a manually chosen set of columns: leave out "pval", reorder.
tab <- tabulate_survival_biomarkers(
  df = df,
  vars = c("n_tot_events", "ci", "n_tot", "median", "hr"),
  time_unit = as.character(adtte_f$AVALU[1])
)
## Finally produce the forest plot.
# \donttest{
g_forest(tab, xlim = c(0.8, 1.2))
# }
Run the code above in your browser using DataLab