r <- rast(system.file("ex/elev.tif", package="terra"))
ra <- aggregate(r, 10)
xy <- data.frame(xyFromCell(ra, 1:ncell(ra)))
v <- values(ra)
i <- !is.na(v)
xy <- xy[i,]
v <- v[i]
if (FALSE) {
library(fields)
tps <- Tps(xy, v)
p <- rast(r)
# use model to predict values at all locations
p <- interpolate(p, tps)
p <- mask(p, r)
plot(p)
### change "fun" from predict to fields::predictSE to get the TPS standard error
## need to use "rast(p)" to remove the values
se <- interpolate(rast(p), tps, fun=predictSE)
se <- mask(se, r)
plot(se)
### another predictor variable, "e"
e <- (init(r, "x") * init(r, "y")) / 100000000
names(e) <- "e"
z <- as.matrix(extract(e, xy)[,-1])
## add as another independent variable
xyz <- cbind(xy, z)
tps2 <- Tps(xyz, v)
p2 <- interpolate(e, tps2, xyOnly=FALSE)
## as a linear coveriate
tps3 <- Tps(xy, v, Z=z)
## Z is a separate argument in Krig.predict, so we need a new function
## Internally (in interpolate) a matrix is formed of x, y, and elev (Z)
pfun <- function(model, x, ...) {
predict(model, x[,1:2], Z=x[,3], ...)
}
p3 <- interpolate(e, tps3, fun=pfun)
#### gstat examples
library(gstat)
library(sp)
data(meuse)
### inverse distance weighted (IDW)
r <- rast(system.file("ex/meuse.tif", package="terra"))
mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse,
nmax=7, set=list(idp = .5))
z <- interpolate(r, mg, debug.level=0, index=1)
z <- mask(z, r)
## with a model built with an `sf` object you need to provide custom function
library(sf)
sfmeuse <- st_as_sf(meuse, coords = c("x", "y"), crs=crs(r))
mgsf <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse, nmax=7, set=list(idp = .5))
interpolate_gstat <- function(model, x, crs, ...) {
v <- st_as_sf(x, coords=c("x", "y"), crs=crs)
p <- predict(model, v, ...)
as.data.frame(p)[,1:2]
}
zsf <- interpolate(r, mgsf, debug.level=0, fun=interpolate_gstat, crs=crs(r), index=1)
zsf <- mask(zsf, r)
### kriging
### ordinary kriging
v <- variogram(log(zinc)~1, ~x+y, data=meuse)
mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))
gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)
OK <- interpolate(r, gOK, debug.level=0)
## universal kriging
vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)
names(r) <- "elev"
UK <- interpolate(r, gUK, debug.level=0)
## co-kriging
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'copper', copper~1, meuse, locations=~x+y)
coV <- variogram(gCoK)
plot(coV, type='b', main='Co-variogram')
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))
coV.fit
plot(coV, coV.fit, main='Fitted Co-variogram')
coK <- interpolate(r, coV.fit, debug.level=0)
plot(coK)
}
Run the code above in your browser using DataLab