powered by
Density, cumulative density, quantiles and random number generation for the generalized Pareto distribution
dgpd(x, sigma, xi, u = 0, log.d = FALSE)pgpd(q, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)qgpd(p, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)rgpd(n, sigma, xi, u = 0)
pgpd(q, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)
qgpd(p, sigma, xi, u = 0, lower.tail = TRUE, log.p = FALSE)
rgpd(n, sigma, xi, u = 0)
Value, quantile or probability respectively.
Scale parameter.
Shape parameter.
Threshold
Whether or not to work on the log scale.
Whether to return the lower tail.
Number of random numbers to simulate.
Janet E Heffernan, Paul Metcalfe, Harry Southworth
Random number generation is done by transformation of a standard exponential.
x <- rgpd(1000, sigma=1, xi=.5) hist(x) x <- rgpd(1000, sigma=exp(rnorm(1000, 1, .25)), xi=rnorm(1000, .5, .2)) hist(x) plot(pgpd(x, sigma=1, xi=.5))
Run the code above in your browser using DataLab