Learn R Programming

tfdatasets (version 2.17.0)

fit.FeatureSpec: Fits a feature specification.

Description

This function will fit the specification. Depending on the steps added to the specification it will compute for example, the levels of categorical features, normalization constants, etc.

Usage

# S3 method for FeatureSpec
fit(object, dataset = NULL, ...)

Value

a fitted FeatureSpec object.

Arguments

object

A feature specification created with feature_spec().

dataset

(Optional) A TensorFlow dataset. If NULL it will use the dataset provided when initilializing the feature_spec.

...

(unused)

See Also

  • feature_spec() to initialize the feature specification.

  • dataset_use_spec() to create a tensorflow dataset prepared to modeling.

  • steps to a list of all implemented steps.

Other Feature Spec Functions: dataset_use_spec(), feature_spec(), step_bucketized_column(), step_categorical_column_with_hash_bucket(), step_categorical_column_with_identity(), step_categorical_column_with_vocabulary_file(), step_categorical_column_with_vocabulary_list(), step_crossed_column(), step_embedding_column(), step_indicator_column(), step_numeric_column(), step_remove_column(), step_shared_embeddings_column(), steps

Examples

Run this code
if (FALSE) {
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)

# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
  step_numeric_column(age)

spec_fit <- fit(spec)
spec_fit
}

Run the code above in your browser using DataLab