Construct a default list of parameters to the b* 
  functions-- the interfaces to treed Gaussian process
  modeling
tgp.default.params(d, meanfn = c("linear", "constant"),
                   corr = c("expsep", "exp", "mrexpsep", "matern", "sim", "twovar"),
                   splitmin = 1, basemax = d, ...)The output is the following list of params...
dimension of regression coefficients \(
	 \beta\): 1 for input meanfn = "constant", or
     ncol(X)+1 for meanfn = "linear"
copied from the inputs
copied from the inputs
Linear (beta) prior, default is "bflat"
     which gives an “improper” prior which can perform badly 
     when the signal-to-noise ratio is low.  In these cases the 
     “proper” hierarchical specification "b0",
     "bmzt", or "bmznot" prior may perform better
rep(0,col) starting values for beta linear parameters
c(0.5,2,max(c(10,col+1)),1,d) indicating the tree prior 
     process parameters \(\alpha\), \(\beta\), minpart,
     splitmin and basemax:
     $$p_{\mbox{\tiny split}}(\eta, \mathcal{T}) =
       \alpha*(1+\eta)^\beta$$
	with zero probability given to trees
	with partitions containing less than nmin data points;
        splitmin indicates the first column of X which 
        where treed partitioning is allowed; basemax gives the
       last column where the base model is used
c(5,10) \(\sigma^2\) inverse-gamma prior
	parameters c(a0, g0) where g0 is rate parameter
c(5,10) \(\tau^2\) inverse-gamma
	prior parameters c(a0, g0) where g0 is rate parameter
c(1.0,20.0,10.0,10.0) Mixture of gamma prior parameter (initial values)
     for the range parameter(s) c(a1,g1,a2,g2) where g1 and
     g2 are rate parameters.  If
     corr="mrexpsep", then this is a vector of length 8: The
     first four parameters remain the same and correspond to the
     "coarse" process, and the
     second set of four values, which default to c(1,10,1,10),
     are the equivalent prior parameters for the range parameter(s) in the residual "fine" process.
c(1,1,1,1) Mixture of gamma prior parameter (initial values)
     for the nugget parameter c(a1,g1,a2,g2) where g1 and
     g2 are rate parameters; default reduces to simple exponential prior;
     specifying nug.p = 0 fixes the nugget parameter to the “starting” 
     value in gd[1], i.e., it is excluded from the MCMC
c(10,0.2,10)
        LLM parameters c(g, t1, t2), with growth parameter g > 0
  	minimum parameter t1 >= 0 and maximum parameter t1 >= 0, where
	t1 + t2 <= 1 specifies $$p(b|d)=t_1 +
	  \exp\left\{\frac{-g(t_2-t_1)}{d-0.5}\right\}$$
"fixed" Hierarchical exponential distribution
	parameters to a1, g1, a2, and g2
	of the prior distribution for the range parameter d.p;
	"fixed" indicates that the hierarchical prior is “turned off”
"fixed" Hierarchical exponential
	distribution parameters to a1, g1,
   	a2, and g2 of the prior distribution for the nug
	parameter nug.p; "fixed" indicates that the
	hierarchical prior is “turned off”
c(0.2,10) Hierarchical exponential distribution prior for 
     a0 and g0 of the prior distribution for the s2
     parameter s2.p; "fixed" indicates that the
     hierarchical prior is “turned off”
c(0.2,0.1) Hierarchical exponential distribution prior for 
     a0 and g0 of the prior distribution for the s2
     parameter tau2.p; "fixed" indicates that the
     hierarchical prior is “turned off”
c(1,1,1,1)  Parameters in the mixture of gammas prior
     on the delta scaling parameter for corr="mrexpsep":
     c(a1,g1,a2,g2) where g1 and
     g2 are rate parameters; default reduces to simple
     exponential prior.  Delta scales the variance of the residual "fine" process with respect to
     the variance of the underlying "coarse" process.
c(1,1,1,1)  Parameters in the mixture of gammas prior
       on the residual “fine” process nugget parameter for
       corr="mrexpsep": c(a1,g1,a2,g2) where g1 and
     g2 are rate parameters; default reduces to simple
     exponential prior.
basemax * basemax RW-MVN
     proposal covariance matrix for GP-SIM models; only appears when
       corr="sim", the default is diag(rep(0.2, basemax))
number of input dimensions ncol(X)
A choice of mean function for the process.  When
    meanfn = "linear" (default), then we have the process
    $$Z = (\mathbf{1}  \;\; \mathbf{X}) \beta + W(\mathbf{X})$$
  where \(W(\mathbf{X})\) represents the Gaussian process
  part of the model (if present).  Otherwise, when
  meanfn = "constant", then$$Z = \beta_0 + W(\mathbf{X})$$
Gaussian process correlation model. Choose between the isotropic
  	power exponential family ("exp") or the separable power exponential 
	family ("expsep", default); the current version also supports 
	the isotropic Matern ("matern") and single-index model
	("sim") and "twovar" as “beta”	functionality.  
  The option "mrexpsep" uses a multi-resolution GP model, 
  a depricated feature in the package
	(docs removed)
Indicates which column of the inputs X should
    be the first to allow splits via treed partitioning.  This is useful
    for excluding certain input directions from the partitioning
    mechanism
Indicates which column of the inputs X should
    be the last be fit under the base model (e.g., LM or GP).  This is useful
    for allowing some input directions (e.g., binary indicators) to only
    influence the tree partitioning mechanism, and not the base model(s)
    at the leaves of the tree
These ellipses arguments are interpreted as augmentations to the prior specification. You may use these to specify a custom setting of any of default parameters in the output list detailed below
Robert B. Gramacy, rbg@vt.edu, and Matt Taddy, mataddy@amazon.com
Gramacy, R. B. (2007). tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models. Journal of Statistical Software, 19(9). https://www.jstatsoft.org/v19/i09 tools:::Rd_expr_doi("10.18637/jss.v019.i09")
Robert B. Gramacy, Matthew Taddy (2010). Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models. Journal of Statistical Software, 33(6), 1--48. https://www.jstatsoft.org/v33/i06/ tools:::Rd_expr_doi("10.18637/jss.v033.i06")
Gramacy, R. B., Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 https://arxiv.org/abs/0710.4536
Robert B. Gramacy, Heng Lian (2011). Gaussian process single-index models as emulators for computer experiments. Available as ArXiv article 1009.4241 https://arxiv.org/abs/1009.4241
blm, btlm, bgp,
  btgp, bgpllm, btgpllm