# \donttest{
#
# 2-d Exponential data
# (This example is based on random data.
# It might be fun to run it a few times)
#
# get the data
exp2d.data <- exp2d.rand()
X <- exp2d.data$X; Z <- exp2d.data$Z
Xcand <- exp2d.data$XX
# fit treed GP LLM model to data w/o prediction
# basically just to get MAP tree (and plot it)
out <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp")
tgp.trees(out)
# find a treed sequential D-Optimal design
# with 10 more points. It is interesting to
# contrast this design with one obtained via
# the dopt.gp function
XX <- tgp.design(10, Xcand, out)
# now fit the model again in order to assess
# the predictive surface at those new design points
dout <- btgpllm(X=X, Z=Z, XX=XX, corr="exp")
plot(dout)
# }
Run the code above in your browser using DataLab