Learn R Programming

themis

themis contains extra steps for the recipes package for dealing with unbalanced data. The name themis is that of the ancient Greek god who is typically depicted with a balance.

Installation

You can install the released version of themis from CRAN with:

install.packages("themis")

Install the development version from GitHub with:

# install.packages("pak")
pak::pak("tidymodels/themis")

Example

Following is a example of using the SMOTE algorithm to deal with unbalanced data

library(recipes)
library(modeldata)
library(themis)

data("credit_data")

credit_data0 <- credit_data %>%
  filter(!is.na(Job))

count(credit_data0, Job)
#>         Job    n
#> 1     fixed 2805
#> 2 freelance 1024
#> 3    others  171
#> 4   partime  452

ds_rec <- recipe(Job ~ Time + Age + Expenses, data = credit_data0) %>%
  step_impute_mean(all_predictors()) %>%
  step_smote(Job, over_ratio = 0.25) %>%
  prep()

ds_rec %>%
  bake(new_data = NULL) %>%
  count(Job)
#> # A tibble: 4 × 2
#>   Job           n
#>   <fct>     <int>
#> 1 fixed      2805
#> 2 freelance  1024
#> 3 others      701
#> 4 partime     701

Methods

Below is some unbalanced data. Used for examples latter.

example_data <- data.frame(class = letters[rep(1:5, 1:5 * 10)],
                           x = rnorm(150))

library(ggplot2)

example_data %>%
  ggplot(aes(class)) +
  geom_bar()

Upsample / Over-sampling

The following methods all share the tuning parameter over_ratio, which is the ratio of the majority-to-minority frequencies.

namefunctionMulti-class
Random minority over-sampling with replacementstep_upsample():heavy_check_mark:
Synthetic Minority Over-sampling Techniquestep_smote():heavy_check_mark:
Borderline SMOTE-1step_bsmote(method = 1):heavy_check_mark:
Borderline SMOTE-2step_bsmote(method = 2):heavy_check_mark:
Adaptive synthetic sampling approach for imbalanced learningstep_adasyn():heavy_check_mark:
Generation of synthetic data by Randomly Over Sampling Examplesstep_rose()

By setting over_ratio = 1 you bring the number of samples of all minority classes equal to 100% of the majority class.

recipe(~., example_data) %>%
  step_upsample(class, over_ratio = 1) %>%
  prep() %>%
  bake(new_data = NULL) %>%
  ggplot(aes(class)) +
  geom_bar()

and by setting over_ratio = 0.5 we upsample any minority class with less samples then 50% of the majority up to have 50% of the majority.

recipe(~., example_data) %>%
  step_upsample(class, over_ratio = 0.5) %>%
  prep() %>%
  bake(new_data = NULL) %>%
  ggplot(aes(class)) +
  geom_bar()

Downsample / Under-sampling

Most of the the following methods all share the tuning parameter under_ratio, which is the ratio of the minority-to-majority frequencies.

namefunctionMulti-classunder_ratio
Random majority under-sampling with replacementstep_downsample():heavy_check_mark::heavy_check_mark:
NearMiss-1step_nearmiss():heavy_check_mark::heavy_check_mark:
Extraction of majority-minority Tomek linksstep_tomek()

By setting under_ratio = 1 you bring the number of samples of all majority classes equal to 100% of the minority class.

recipe(~., example_data) %>%
  step_downsample(class, under_ratio = 1) %>%
  prep() %>%
  bake(new_data = NULL) %>%
  ggplot(aes(class)) +
  geom_bar()

and by setting under_ratio = 2 we downsample any majority class with more then 200% samples of the minority class down to have to 200% samples of the minority.

recipe(~., example_data) %>%
  step_downsample(class, under_ratio = 2) %>%
  prep() %>%
  bake(new_data = NULL) %>%
  ggplot(aes(class)) +
  geom_bar()

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('themis')

Monthly Downloads

6,910

Version

1.0.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

August 14th, 2023

Functions in themis (1.0.2)

step_smotenc

Apply SMOTENC algorithm
step_upsample

Up-Sample a Data Set Based on a Factor Variable
tidy.step_adasyn

Tidy the Result of a Recipe
tomek

Remove Tomek's links
themis-package

themis: Extra Recipes Steps for Dealing with Unbalanced Data
step_rose

Apply ROSE Algorithm
step_smote

Apply SMOTE Algorithm
step_nearmiss

Remove Points Near Other Classes
step_tomek

Remove Tomek’s Links
step_downsample

Down-Sample a Data Set Based on a Factor Variable
tunable.step_adasyn

tunable methods for themis
adasyn

Adaptive Synthetic Algorithm
required_pkgs.step_adasyn

S3 methods for tracking which additional packages are needed for steps.
bsmote

borderline-SMOTE Algorithm
step_bsmote

Apply borderline-SMOTE Algorithm
reexports

Objects exported from other packages
smotenc

SMOTENC Algorithm
nearmiss

Remove Points Near Other Classes
step_adasyn

Apply Adaptive Synthetic Algorithm
smote

SMOTE Algorithm
circle_example

Synthetic Dataset With a Circle