Finding the right variables to use with get_decennial()
or get_acs()
can be challenging; load_variables()
attempts to make this easier for you. Choose a year and a dataset to search for variables; those variables will be loaded from the Census website as an R data frame. It is recommended that RStudio users use the View()
function to interactively browse and filter these variables to find the right variables to use.
load_variables(
year,
dataset = c("sf1", "sf2", "sf3", "sf4", "pl", "dhc", "dp", "ddhca", "as", "gu", "mp",
"vi", "acsse", "dpas", "dpgu", "dpmp", "dpvi", "dhcvi", "dhcgu", "dhcvi", "dhcas",
"acs1", "acs3", "acs5", "acs1/profile", "acs3/profile", "acs5/profile",
"acs1/subject", "acs3/subject", "acs5/subject", "acs1/cprofile", "acs5/cprofile",
"sf2profile", "sf3profile", "sf4profile", "aian", "aianprofile", "cd110h", "cd110s",
"cd110hprofile", "cd110sprofile", "sldh", "slds", "sldhprofile", "sldsprofile",
"cqr", "cd113", "cd113profile",
"cd115", "cd115profile", "cd116", "plnat",
"cd118"),
cache = FALSE
)
A tibble of variables from the requested dataset.
The year for which you are requesting variables. Either the year or endyear of the decennial Census or ACS sample. 5-year ACS data is available from 2009 through 2020. 1-year ACS data is available from 2005 through 2021, with the exception of 2020.
The dataset name as used on the Census website. See the Details in this documentation for a full list of dataset names.
Whether you would like to cache the dataset for future access, or load the dataset from an existing cache. Defaults to FALSE.
load_variables()
returns three columns by default: name
, which is the Census ID code to be supplied to the variables
parameter in get_decennial()
or get_acs()
; label
, which is a detailed description of the variable; and concept
, which provides information about the table that a given variable belongs to. For 5-year ACS detailed tables datasets, a fourth column, geography
, tells you the smallest geography at which a given variable is available.
Datasets available are as follows: "sf1", "sf2", "sf3", "sf4", "pl", "dhc", "dp", "dhca", "ddhca", "as", "gu", "mp", "vi", "acsse", "dpas", "dpgu", "dpmp", "dpvi", "dhcvi", "dhcgu", "dhcvi", "dhcas", "acs1", "acs3", "acs5", "acs1/profile", "acs3/profile", "acs5/profile", "acs1/subject", "acs3/subject", "acs5/subject", "acs1/cprofile", "acs5/cprofile", "sf2profile", "sf3profile", "sf4profile", "aian", "aianprofile", "cd110h", "cd110s", "cd110hprofile", "cd110sprofile", "sldh", "slds", "sldhprofile", "sldsprofile", "cqr", "cd113", "cd113profile", "cd115", "cd115profile", "cd116", "cd118", and "plnat".
if (FALSE) {
v15 <- load_variables(2015, "acs5", cache = TRUE)
View(v15)
}
Run the code above in your browser using DataLab