Learn R Programming

tidyjson

tidyjson provides tools for turning complex json into tidy data.

Installation

Get the released version from CRAN:

install.packages("tidyjson")

or the development version from github:

devtools::install_github("colearendt/tidyjson")

Examples

The following example takes a character vector of 500 documents in the worldbank dataset and spreads out all objects.
Every JSON object key gets its own column with types inferred, so long as the key does not represent an array. When recursive=TRUE (the default behavior), spread_all does this recursively for nested objects and creates column names using the sep parameter (i.e. {"a":{"b":1}} with sep='.' would generate a single column: a.b).

library(dplyr)
library(tidyjson)

worldbank %>% spread_all
#> # A tbl_json: 500 x 9 tibble with a "JSON" attribute
#>    ..JSON        docum…¹ board…² closi…³ count…⁴ proje…⁵ regio…⁶ total…⁷ _id.$…⁸
#>    <chr>           <int> <chr>   <chr>   <chr>   <chr>   <chr>     <dbl> <chr>  
#>  1 "{\"_id\":{\…       1 2013-1… 2018-0… Ethiop… Ethiop… Africa   1.3 e8 52b213…
#>  2 "{\"_id\":{\…       2 2013-1… <NA>    Tunisia TN: DT… Middle…  0      52b213…
#>  3 "{\"_id\":{\…       3 2013-1… <NA>    Tuvalu  Tuvalu… East A…  6.06e6 52b213…
#>  4 "{\"_id\":{\…       4 2013-1… <NA>    Yemen,… Gov't … Middle…  0      52b213…
#>  5 "{\"_id\":{\…       5 2013-1… 2019-0… Lesotho Second… Africa   1.31e7 52b213…
#>  6 "{\"_id\":{\…       6 2013-1… <NA>    Kenya   Additi… Africa   1   e7 52b213…
#>  7 "{\"_id\":{\…       7 2013-1… 2019-0… India   Nation… South …  5   e8 52b213…
#>  8 "{\"_id\":{\…       8 2013-1… <NA>    China   China … East A…  0      52b213…
#>  9 "{\"_id\":{\…       9 2013-1… 2018-1… India   Rajast… South …  1.6 e8 52b213…
#> 10 "{\"_id\":{\…      10 2013-1… 2014-1… Morocco MA Acc… Middle…  2   e8 52b213…
#> # … with 490 more rows, and abbreviated variable names ¹​document.id,
#> #   ²​boardapprovaldate, ³​closingdate, ⁴​countryshortname, ⁵​project_name,
#> #   ⁶​regionname, ⁷​totalamt, ⁸​`_id.$oid`

Some objects in worldbank are arrays, which are not handled by spread_all. This example shows how to quickly summarize the top level structure of a JSON collection

worldbank %>% gather_object %>% json_types %>% count(name, type)
#> # A tibble: 8 × 3
#>   name                type       n
#>   <chr>               <fct>  <int>
#> 1 _id                 object   500
#> 2 boardapprovaldate   string   500
#> 3 closingdate         string   370
#> 4 countryshortname    string   500
#> 5 majorsector_percent array    500
#> 6 project_name        string   500
#> 7 regionname          string   500
#> 8 totalamt            number   500

In order to capture the data in the majorsector_percent array, we can use enter_object to enter into that object, gather_array to stack the array and spread_all to capture the object items under the array.

worldbank %>%
  enter_object(majorsector_percent) %>%
  gather_array %>%
  spread_all %>%
  select(-document.id, -array.index)
#> # A tbl_json: 1,405 x 3 tibble with a "JSON" attribute
#>    ..JSON                  Name                                    Percent
#>    <chr>                   <chr>                                     <dbl>
#>  1 "{\"Name\":\"Educat..." Education                                    46
#>  2 "{\"Name\":\"Educat..." Education                                    26
#>  3 "{\"Name\":\"Public..." Public Administration, Law, and Justice      16
#>  4 "{\"Name\":\"Educat..." Education                                    12
#>  5 "{\"Name\":\"Public..." Public Administration, Law, and Justice      70
#>  6 "{\"Name\":\"Public..." Public Administration, Law, and Justice      30
#>  7 "{\"Name\":\"Transp..." Transportation                              100
#>  8 "{\"Name\":\"Health..." Health and other social services            100
#>  9 "{\"Name\":\"Indust..." Industry and trade                           50
#> 10 "{\"Name\":\"Indust..." Industry and trade                           40
#> # … with 1,395 more rows

API

Spreading objects into columns

  • spread_all() for spreading all object values into new columns, with nested objects having concatenated names

  • spread_values() for specifying a subset of object values to spread into new columns using the jstring(), jinteger(), jdouble() and jlogical() functions. It is possible to specify multiple parameters to extract data from nested objects (i.e. jstring('a','b')).

Object navigation

  • enter_object() for entering into an object by name, discarding all other JSON (and rows without the corresponding object name) and allowing further operations on the object value

  • gather_object() for stacking all object name-value pairs by name, expanding the rows of the tbl_json object accordingly

Array navigation

  • gather_array() for stacking all array values by index, expanding the rows of the tbl_json object accordingly

JSON inspection

  • json_types() for identifying JSON data types

  • json_length() for computing the length of JSON data (can be larger than 1 for objects and arrays)

  • json_complexity() for computing the length of the unnested JSON, i.e., how many terminal leaves there are in a complex JSON structure

  • is_json family of functions for testing the type of JSON data

JSON summarization

  • json_structure() for creating a single fixed column data.frame that recursively structures arbitrary JSON data

  • json_schema() for representing the schema of complex JSON, unioned across disparate JSON documents, and collapsing arrays to their most complex type representation

Creating tbl_json objects

  • as.tbl_json() for converting a string or character vector into a tbl_json object, or for converting a data.frame with a JSON column using the json.column argument

  • tbl_json() for combining a data.frame and associated list derived from JSON data into a tbl_json object

  • read_json() for reading JSON data from a file

Converting tbl_json objects

  • as.character.tbl_json for converting the JSON attribute of a tbl_json object back into a JSON character string

Included JSON data

  • commits: commit data for the dplyr repo from github API

  • issues: issue data for the dplyr repo from github API

  • worldbank: world bank funded projects from jsonstudio

  • companies: startup company data from jsonstudio

Philosophy

The goal is to turn complex JSON data, which is often represented as nested lists, into tidy data frames that can be more easily manipulated.

  • Work on a single JSON document, or on a collection of related documents

  • Create pipelines with %>%, producing code that can be read from left to right

  • Guarantee the structure of the data produced, even if the input JSON structure changes (with the exception of spread_all)

  • Work with arbitrarily nested arrays or objects

  • Handle ‘ragged’ arrays and / or objects (varying lengths by document)

  • Allow for extraction of data in values or object names

  • Ensure edge cases are handled correctly (especially empty data)

  • Integrate seamlessly with dplyr, allowing tbl_json objects to pipe in and out of dplyr verbs where reasonable

Related Work

Tidyjson depends upon

  • magrritr for the %>% pipe operator
  • jsonlite for converting JSON strings into nested lists
  • purrr for list operators
  • tidyr for unnesting and spreading

Further, there are other R packages that can be used to better understand JSON data

Copy Link

Version

Install

install.packages('tidyjson')

Monthly Downloads

3,621

Version

0.3.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

January 7th, 2023

Functions in tidyjson (0.3.2)

determine_types

Determines the types of a list of parsed JSON
as_tibble

Objects exported from other packages
enter_object

Enter into a specific object and discard all other JSON data
tbl_json

Combines structured JSON (as a data.frame) with remaining JSON
[.tbl_json

Extract subsets of a tbl_json object (not replace)
companies

Startup company information for 1,000 companies
bind_rows

Objects exported from other packages
filter

Objects exported from other packages
as_tibble.tbl_json

Convert a tbl_json back to a tbl_df
commits

Commit data for the dplyr repo from github API
my_unlist

Unlists while preserving NULLs and only unlisting lists with one value
gather_array

Gather a JSON array into index-value pairs
issues

Issue data for the dplyr repo from github API
json_complexity

Compute the complexity (recursively unlisted length) of JSON data
path

Create a JSON path with a minimum of typing
json_get

Get JSON from a tbl_json
spread_values

Spreads specific scalar values of a JSON object into new columns
json_get_column

Make the JSON data a persistent column
append_values_factory

Creates the append_values_* functions
is_json

Predicates to test for specific JSON types in tbl_json objects
spread_all

Spreads all scalar values of a JSON object into new columns
append_values_type

get list of values from json
is_json_factory

Factory to create is_json functions
json_factory

Factory that creates the j* functions below
wrap_dplyr_verb

Wrapper for extending dplyr verbs to tbl_json objects
json_functions

Navigates nested objects to get at names of a specific type, to be used as arguments to spread_values
gather_factory

Factory to create gather functions
allowed_json_types

Fundamental JSON types from http://json.org/, where I collapse 'true' and 'false' into 'logical'
%>%

Objects exported from other packages
worldbank

Projects funded by the World Bank
append_values

Appends all JSON values with a specified type as a new column
gather_object

Gather a JSON object into name-value pairs
tidyjson

tidyjson
rbind_tbl_json

Bind two tbl_json objects together and preserve JSON attribute
json_lengths

Compute the length of JSON data
read_json

Reads JSON from an input uri (file, url, ...) and returns a tbl_json object
json_schema

Create a schema for a JSON document or collection
print.tbl_json

Print a tbl_json object
has_names

Check for Names
json_structure

Recursively structures arbitrary JSON data into a single data frame
json_types

Add a column that tells the 'type' of the JSON data
is_data_list

List Check
as.character.tbl_json

Convert the JSON in an tbl_json object back to a JSON string