study %>%
tidyplot(x = dose, y = score, color = group) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue()
# Change stat methods
study %>%
tidyplot(x = dose, y = score, color = group) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue(method = "wilcoxon", p.adjust.method = "BH")
# Define reference group to test against
study %>%
tidyplot(x = treatment, y = score, color = treatment) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue(ref.group = "A")
# hide non-significant p values
gene_expression %>%
# filter to one gene
dplyr::filter(external_gene_name == "Apol6") %>%
# start plotting
tidyplot(x = condition, y = expression, color = sample_type) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue(hide.ns = TRUE)
# Adjust top padding for statistical comparisons
study %>%
tidyplot(x = treatment, y = score, color = treatment) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue(padding_top = 0.08)
# Hide stats information
study %>%
tidyplot(x = dose, y = score, color = group) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points() %>%
add_test_pvalue(hide_info = TRUE)
Run the code above in your browser using DataLab