tidytable
Why tidytable?
tidyverse-like syntax withdata.tablespeedrlangcompatibility- Includes functions that
dtplyris missing, including manytidyrfunctions
Installation
Install the released version from CRAN with:
install.packages("tidytable")Or install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("markfairbanks/tidytable")General syntax
tidytable uses verb.() syntax to replicate tidyverse functions:
library(tidytable)
test_df <- data.table(x = 1:3, y = 4:6, z = c("a","a","b"))
test_df %>%
select.(x, y, z) %>%
filter.(x < 4, y > 1) %>%
arrange.(x, y) %>%
mutate.(double_x = x * 2,
double_y = y * 2)
#> # tidytable [3 × 5]
#> x y z double_x double_y
#> <int> <int> <chr> <dbl> <dbl>
#> 1 1 4 a 2 8
#> 2 2 5 a 4 10
#> 3 3 6 b 6 12A full list of functions can be found here.
Using “group by”
Group by calls are done from inside any function that has group by
functionality (such as summarize.() & mutate.())
- A single column can be passed with
.by = z - Multiple columns can be passed with
.by = c(y, z)
test_df %>%
summarize.(avg_x = mean(x),
count = n.(),
.by = z)
#> # tidytable [2 × 3]
#> z avg_x count
#> <chr> <dbl> <int>
#> 1 a 1.5 2
#> 2 b 3 1.by vs. group_by()
A key difference between tidytable/data.table & dplyr is that
dplyr can have multiple functions operate “by group” with a single
group_by() call.
We’ll start with an example dplyr pipe chain that utilizes
group_by() and then rewrite it in tidytable. The goal is to grab the
first two rows of each group using slice(), then add a row number
column using mutate():
library(dplyr)
test_df <- tibble(x = c("a", "a", "a", "b", "b"))
test_df %>%
group_by(x) %>%
slice(1:2) %>%
mutate(group_row_num = row_number()) %>%
ungroup()
#> # A tibble: 4 x 2
#> x group_row_num
#> <chr> <int>
#> 1 a 1
#> 2 a 2
#> 3 b 1
#> 4 b 2In this case both slice() and mutate() will operate “by group”. This
happens until you call ungroup() at the end of the chain.
However data.table doesn’t “remember” groups between function calls.
So in tidytable you need to call .by in each function you want to
operate “by group”, and you don’t need to call ungroup() at the end:
library(tidytable)
test_df %>%
slice.(1:2, .by = x) %>%
mutate.(group_row_num = row_number.(), .by = x)
#> # tidytable [4 × 2]
#> x group_row_num
#> <chr> <int>
#> 1 a 1
#> 2 a 2
#> 3 b 1
#> 4 b 2tidyselect support
tidytable allows you to select/drop columns just like you would in the
tidyverse by utilizing the tidyselect
package in the background.
Normal selection can be mixed with all tidyselect helpers:
everything(), starts_with(), ends_with(), any_of(), where(),
etc.
test_df <- data.table(
a = 1:3,
b1 = 4:6,
b2 = 7:9,
c = c("a","a","b")
)
test_df %>%
select.(a, starts_with("b"))
#> # tidytable [3 × 3]
#> a b1 b2
#> <int> <int> <int>
#> 1 1 4 7
#> 2 2 5 8
#> 3 3 6 9To drop columns use a - sign:
test_df %>%
select.(-a, -starts_with("b"))
#> # tidytable [3 × 1]
#> c
#> <chr>
#> 1 a
#> 2 a
#> 3 bThese same ideas can be used whenever selecting columns in tidytable
functions - for example when using count.(), drop_na.(),
mutate_across.(), pivot_longer.(), etc.
A full overview of selection options can be found here.
Using tidyselect in .by
tidyselect helpers also work when using .by:
test_df <- data.table(
a = 1:3,
b = 4:6,
c = c("a","a","b"),
d = c("a","a","b")
)
test_df %>%
summarize.(avg_b = mean(b), .by = where(is.character))
#> # tidytable [2 × 3]
#> c d avg_b
#> <chr> <chr> <dbl>
#> 1 a a 4.5
#> 2 b b 6rlang compatibility
rlang can be used to write custom functions with tidytable
functions. The embracing shortcut {{ }} works, or you can use
enquo() with !! if you prefer.
df <- data.table(x = c(1,1,1), y = c(1,1,1), z = c("a","a","b"))
add_one <- function(data, add_col) {
data %>%
mutate.(new_col = {{ add_col }} + 1)
}
df %>%
add_one(x)
#> # tidytable [3 × 4]
#> x y z new_col
#> <dbl> <dbl> <chr> <dbl>
#> 1 1 1 a 2
#> 2 1 1 a 2
#> 3 1 1 b 2Auto-conversion
All tidytable functions automatically convert data.frame and
tibble inputs to a data.table:
library(dplyr)
library(data.table)
test_df <- tibble(x = 1:3, y = 4:6, z = c("a","a","b"))
test_df %>%
mutate.(double_x = x * 2) %>%
is.data.table()
#> [1] TRUEdt() helper
The dt() function makes regular data.table syntax pipeable, so you
can easily mix tidytable syntax with data.table syntax:
df <- data.table(x = 1:3, y = 4:6, z = c("a", "a", "b"))
df %>%
dt(, list(x, y, z)) %>%
dt(x < 4 & y > 1) %>%
dt(order(x, y)) %>%
dt(, double_x := x * 2) %>%
dt(, list(avg_x = mean(x)), by = z)
#> # tidytable [2 × 2]
#> z avg_x
#> <chr> <dbl>
#> 1 a 1.5
#> 2 b 3Speed Comparisons
For those interested in performance, speed comparisons can be found here.