Learn R Programming

⚠️There's a newer version (0.11.2) of this package.Take me there.

tidytable

Why tidytable?

  • tidyverse-like syntax with data.table speed
  • rlang compatibility
  • Includes functions that dtplyr is missing, including many tidyr functions

Installation

Install the released version from CRAN with:

install.packages("tidytable")

Or install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("markfairbanks/tidytable")

General syntax

tidytable uses verb.() syntax to replicate tidyverse functions:

library(tidytable)

test_df <- data.table(x = 1:3, y = 4:6, z = c("a","a","b"))

test_df %>%
  select.(x, y, z) %>%
  filter.(x < 4, y > 1) %>%
  arrange.(x, y) %>%
  mutate.(double_x = x * 2,
          double_y = y * 2)
#> # tidytable [3 × 5]
#>       x     y z     double_x double_y
#>   <int> <int> <chr>    <dbl>    <dbl>
#> 1     1     4 a            2        8
#> 2     2     5 a            4       10
#> 3     3     6 b            6       12

A full list of functions can be found here.

Using “group by”

Group by calls are done by using the .by argument of any function that has “by group” functionality.

  • A single column can be passed with .by = z
  • Multiple columns can be passed with .by = c(y, z)
test_df %>%
  summarize.(avg_x = mean(x),
             max_y = max(y),
             .by = z)
#> # tidytable [2 × 3]
#>   z     avg_x max_y
#>   <chr> <dbl> <int>
#> 1 a       1.5     5
#> 2 b       3       6

.by vs. group_by()

tidytable follows data.table semantics where .by must be called each time you want a function to operate “by group”.

Below is some example tidytable code that utilizes .by that we’ll then compare to its dplyr equivalent. The goal is to grab the first two rows of each group using slice.(), then add a group row number column using mutate.():

library(tidytable)

test_df <- data.table(x = c("a", "a", "a", "b", "b"))

test_df %>%
  slice.(1:2, .by = x) %>%
  mutate.(group_row_num = row_number.(), .by = x)
#> # tidytable [4 × 2]
#>   x     group_row_num
#>   <chr>         <int>
#> 1 a                 1
#> 2 a                 2
#> 3 b                 1
#> 4 b                 2

Note how .by is called in both slice.() and mutate.().

Compared to a dplyr pipe chain that utilizes group_by(), where each function operates “by group” until ungroup() is called:

library(dplyr)

test_df <- tibble(x = c("a", "a", "a", "b", "b"))

test_df %>%
  group_by(x) %>%
  slice(1:2) %>%
  mutate(group_row_num = row_number()) %>%
  ungroup()
#> # A tibble: 4 x 2
#>   x     group_row_num
#>   <chr>         <int>
#> 1 a                 1
#> 2 a                 2
#> 3 b                 1
#> 4 b                 2

Note that the ungroup() call is unnecessary in tidytable.

tidyselect support

tidytable allows you to select/drop columns just like you would in the tidyverse by utilizing the tidyselect package in the background.

Normal selection can be mixed with all tidyselect helpers: everything(), starts_with(), ends_with(), any_of(), where(), etc.

test_df <- data.table(
  a = 1:3,
  b1 = 4:6,
  b2 = 7:9,
  c = c("a","a","b")
)

test_df %>%
  select.(a, starts_with("b"))
#> # tidytable [3 × 3]
#>       a    b1    b2
#>   <int> <int> <int>
#> 1     1     4     7
#> 2     2     5     8
#> 3     3     6     9

To drop columns use a - sign:

test_df %>%
  select.(-a, -starts_with("b"))
#> # tidytable [3 × 1]
#>   c    
#>   <chr>
#> 1 a    
#> 2 a    
#> 3 b

These same ideas can be used whenever selecting columns in tidytable functions - for example when using count.(), drop_na.(), mutate_across.(), pivot_longer.(), etc.

A full overview of selection options can be found here.

Using tidyselect in .by

tidyselect helpers also work when using .by:

test_df <- data.table(
  a = 1:3,
  b = 4:6,
  c = c("a","a","b"),
  d = c("a","a","b")
)

test_df %>%
  summarize.(avg_b = mean(b), .by = where(is.character))
#> # tidytable [2 × 3]
#>   c     d     avg_b
#>   <chr> <chr> <dbl>
#> 1 a     a       4.5
#> 2 b     b       6

rlang compatibility

rlang can be used to write custom functions with tidytable functions. The embracing shortcut {{ }} works, or you can use enquo() with !! if you prefer.

df <- data.table(x = c(1,1,1), y = c(1,1,1), z = c("a","a","b"))

add_one <- function(data, add_col) {
  data %>%
    mutate.(new_col = {{ add_col }} + 1)
}

df %>%
  add_one(x)
#> # tidytable [3 × 4]
#>       x     y z     new_col
#>   <dbl> <dbl> <chr>   <dbl>
#> 1     1     1 a           2
#> 2     1     1 a           2
#> 3     1     1 b           2

Auto-conversion

All tidytable functions automatically convert data.frame and tibble inputs to a data.table:

library(dplyr)
library(data.table)

test_df <- tibble(x = 1:3, y = 4:6, z = c("a","a","b"))

test_df %>%
  mutate.(double_x = x * 2) %>%
  is.data.table()
#> [1] TRUE

dt() helper

The dt() function makes regular data.table syntax pipeable, so you can easily mix tidytable syntax with data.table syntax:

df <- data.table(x = 1:3, y = 4:6, z = c("a", "a", "b"))

df %>%
  dt(, list(x, y, z)) %>%
  dt(x < 4 & y > 1) %>%
  dt(order(x, y)) %>%
  dt(, double_x := x * 2) %>%
  dt(, list(avg_x = mean(x)), by = z)
#> # tidytable [2 × 2]
#>   z     avg_x
#>   <chr> <dbl>
#> 1 a       1.5
#> 2 b       3

Speed Comparisons

For those interested in performance, speed comparisons can be found here.

Copy Link

Version

Install

install.packages('tidytable')

Monthly Downloads

3,446

Version

0.5.9

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Mark Fairbanks

Last Published

March 4th, 2021

Functions in tidytable (0.5.9)

arrange_across.

Arrange by a selection of variables
rename.

Rename variables by name
rename_with.

Rename multiple columns
pull.

Pull out a single variable
pivot_wider.

Pivot data from long to wide
knit_print.tidytable

knit_print method for tidytables
lags.

Get lagging or leading values
drop_na.

Drop rows containing missing values
nest.

Nest data.tables
nest_by.

Nest data.tables
distinct.

Select distinct/unique rows
crossing.

Create a data.table from all unique combinations of inputs
filter.

Filter rows on one or more conditions
map.

Apply a function to each element of a vector or list
fill.

Fill in missing values with previous or next value
left_join.

Join two data.tables together
%>%

Pipe operator
dt

Pipeable data.table call
expand.

Expand a data.table to use all combinations of values
is_tidytable

Test if the object is a tidytable
inv_gc

Run invisible garbage collection
unnest.

Unnest a nested data.table
pivot_longer.

Pivot data from wide to long
desc.

Descending order
expand_grid.

Create a data.table from all combinations of inputs
extract.

Extract a character column into multiple columns using regex
get_dummies.

Convert character and factor columns to dummy variables
%notin%

notin operator
separate.

Separate a character column into multiple columns
uncount.

Uncount a data.table
unite.

Unite multiple columns by pasting strings together
select.

Select or drop columns
mutate_rowwise.

Add/modify columns by row
ifelse.

Fast ifelse
group_split.

Split data frame by groups
n.

Number of observations in each group
replace_na.

Replace missing values
row_number.

Return row number
mutate.

Add/modify/delete columns
mutate_across.

Mutate multiple columns simultaneously
separate_rows.

Separate a collapsed column into multiple rows
tidytable-vctrs

Internal vctrs methods
tidytable

Build a data.table/tidytable
summarize.

Aggregate data using summary statistics
slice.

Choose rows in a data.table
summarize_across.

Summarize multiple columns
relocate.

Relocate a column to a new position
reexports

Objects exported from other packages
top_n.

Select top (or bottom) n rows (by value)
transmute.

Add new variables and drop all others
bind_cols.

Bind data.tables by row and column
case.

Improved data.table::fcase()
arrange.

Arrange/reorder rows
complete.

Complete a data.table with missing combinations of data
c_across.

Combine values from multiple columns
as_tidytable

Coerce an object to a data.table/tidytable
count.

Count observations by group
case_when.

Case when
between.

Do the values from x fall between the left and right bounds?