# NOT RUN {
# }
# NOT RUN {
if (requireNamespace("stm", quietly = TRUE)) {
library(dplyr)
library(ggplot2)
library(stm)
library(janeaustenr)
austen_sparse <- austen_books() %>%
unnest_tokens(word, text) %>%
anti_join(stop_words) %>%
count(book, word) %>%
cast_sparse(book, word, n)
topic_model <- stm(austen_sparse, K = 12, verbose = FALSE, init.type = "Spectral")
# tidy the word-topic combinations
td_beta <- tidy(topic_model)
td_beta
# Examine the topics
td_beta %>%
group_by(topic) %>%
top_n(10, beta) %>%
ungroup() %>%
ggplot(aes(term, beta)) +
geom_col() +
facet_wrap(~ topic, scales = "free") +
coord_flip()
# tidy the document-topic combinations, with optional document names
td_gamma <- tidy(topic_model, matrix = "gamma",
document_names = rownames(austen_sparse))
td_gamma
# using stm's gardarianFit, we can tidy the result of a model
# estimated with covariates
effects <- estimateEffect(1:3 ~ treatment, gadarianFit, gadarian)
glance(effects)
td_estimate <- tidy(effects)
td_estimate
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab