Learn R Programming

timereg (version 2.0.4)

recurrent.marginal.coxmean: Estimates marginal mean of recurrent events based on two cox models

Description

Fitting two Cox models for death and recurent events these are combined to prducte the estimator $$ \int_0^t S(u|x=0) dR(u|x=0) $$ the mean number of recurrent events, here $$ S(u|x=0) $$ is the probability of survival, and $$ dR(u|x=0) $$ is the probability of an event among survivors. For now the estimator is based on the two-baselines so $$x=0$$, but covariates can be rescaled to look at different x's and extensions possible.

Usage

recurrent.marginal.coxmean(recurrent, death)

Arguments

recurrent

aalen model for recurrent events

death

cox.aalen (cox) model for death events

Author

Thomas Scheike

Details

IID versions along the lines of Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data. IID versions used for Ghosh & Lin (2000) variance. See also mets package for quick version of this for large data mets:::recurrent.marginal, these two version should give the same when there are now ties.

References

Ghosh and Lin (2002) Nonparametric Analysis of Recurrent events and death, Biometrics, 554--562.

Examples

Run this code
# \donttest{
### do not test because iid slow  and uses data from mets
library(mets)
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz
rr <- simRecurrent(100,base1,death.cumhaz=dr)
rr$x <- rnorm(nrow(rr)) 
rr$strata <- floor((rr$id-0.01)/50)
drename(rr) <- start+stop~entry+time

ar <- cox.aalen(Surv(start,stop,status)~+1+prop(x)+cluster(id),data=rr,
                   resample.iid=1,,max.clust=NULL,max.timepoint.sim=NULL)
ad <- cox.aalen(Surv(start,stop,death)~+1+prop(x)+cluster(id),data=rr,
                   resample.iid=1,,max.clust=NULL,max.timepoint.sim=NULL)
mm <- recurrent.marginal.coxmean(ar,ad)
with(mm,plot(times,mu,type="s"))
with(mm,lines(times,mu+1.96*se.mu,type="s",lty=2))
with(mm,lines(times,mu-1.96*se.mu,type="s",lty=2))
# }

Run the code above in your browser using DataLab