Learn R Programming

timsac (version 1.3.8)

optdes: Optimal Controller Design

Description

Compute optimal controller gain matrix for a quadratic criterion defined by two positive definite matrices Q and R.

Usage

optdes(y, max.order = NULL, ns, q, r)

Value

perr

prediction error covariance matrix.

trans

first \(m\) columns of transition matrix, where \(m\) is the number of controlled variables.

gamma

gamma matrix.

gain

gain matrix.

Arguments

y

a multivariate time series.

max.order

upper limit of model order. Default is \(2 \sqrt{n}\), where \(n\) is the length of the time series y.

ns

number of D.P. stages.

q

positive definite \((m, m)\) matrix \(Q\), where \(m\) is the number of controlled variables. A quadratic criterion is defined by \(Q\) and \(R\).

r

positive definite \((l, l)\) matrix \(R\), where \(l\) is the number of manipulated variables.

References

H.Akaike and T.Nakagawa (1988) Statistical Analysis and Control of Dynamic Systems. Kluwer Academic publishers.

Examples

Run this code
# Multivariate Example Data
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4,  0,   0.3,
                      0.2, -0.1, -0.5,
                      0.3,  0.1, 0), nrow= 3, ncol= 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0,  -0.3,  0.5,
                      0.7, -0.4,  1,
                      0,   -0.5,  0.3), nrow= 3, ncol= 3, byrow = TRUE)
x <- matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
q.mat <- matrix(c(0.16,0,0,0.09), nrow = 2, ncol = 2)
r.mat <- as.matrix(0.001)
optdes(y, ns = 20, q = q.mat, r = r.mat)

Run the code above in your browser using DataLab