r_value: Robustness value
Description
This function wraps the sensemakr::robustness_value()
function
Usage
r_value(effect_observed, se, df, ...)
Value
Numeric. Robustness value
Arguments
- effect_observed
Numeric. Observed exposure - outcome effect from a
regression model. This is the point estimate (beta coefficient)
- se
Numeric. Standard error of the effect_observed
in the previous parameter.
- df
Numeric positive value. Residual degrees of freedom for the model
used to estimate the observed exposure - outcome effect. This is the total
number of observations minus the number of parameters estimated in your
model. Often for models estimated with an intercept this is N - k - 1
where k is the number of predictors in the model.
- ...
Optional arguments passed to the sensemakr::robustness_value()
function.
References
Carlos Cinelli, Jeremy Ferwerda and Chad Hazlett (2021).
sensemakr: Sensitivity Analysis
Tools for Regression Models. R package version 0.1.4.
https://CRAN.R-project.org/package=sensemakr