# NOT RUN {
if(require("ggplot2") && require("reshape")) {
# Examples of plotting tis series with ggplot2
require("datasets")
require("scales")
# univariate example
num_discoveries <- as.tis(discoveries)
ggplot(data = fortify(num_discoveries, offset=0)) +
geom_line(aes(x=date, y=num_discoveries)) +
scale_x_date(breaks = date_breaks("10 years"), labels = date_format("%Y"))
# multivariate example using the "melt trick"
Seatbelts.tis <- as.tis(Seatbelts[ , c("drivers", "front", "rear")])
Seatbelt.names <- c("Driver", "Front Seat Passenger", "Back Seat Passenger")
Seatbelts.df <- fortify(Seatbelts.tis, dfNames = Seatbelt.names,
timeName = "Time")
Seatbelts.dfm <- melt(Seatbelts.df, id.var = "Time", variable_name="type")
qplot( Time, value, data = Seatbelts.dfm, geom="line",
group=type, colour=type, linetype=type ) +
geom_vline(xintercept=as.numeric(as.Date("1983-01-31")),
colour="black", linetype="dashed") +
ylab("Monthly Road Casulties in the UK")
}
# }
Run the code above in your browser using DataLab