# NOT RUN {
if (require(tmap) && packageVersion("tmap") >= "2.0") {
data(land)
# original map
qtm(land, raster="cover_cls")
# }
# NOT RUN {
# map decreased by factor 4 for each dimension
land4 <- aggregate_map(land, fact=4, agg.fun="modal")
qtm(land4, raster="cover_cls")
# }
# NOT RUN {
# map decreased by factor 8, where the variable trees is
# aggregated with mean, min, and max
land_trees <- aggregate_map(land, fact=8,
agg.fun=list(trees="mean", trees="min", trees="max"))
tm_shape(land_trees) +
tm_raster(c("trees.1", "trees.2", "trees.3"), title="Trees (%)") +
tm_facets(free.scales=FALSE) +
tm_layout(panel.labels = c("mean", "min", "max"))
data(NLD_muni, NLD_prov)
# aggregate Dutch municipalities to provinces
NLD_prov2 <- aggregate_map(NLD_muni, by="province",
agg.fun = list(population="sum", origin_native="mean", origin_west="mean",
origin_non_west="mean", name="modal"), weights = "population")
# see original provinces data
as.data.frame(NLD_prov)[, c("name", "population", "origin_native",
"origin_west", "origin_non_west")]
# see aggregates data (the last column corresponds to the most populated municipalities)
sf::st_set_geometry(NLD_prov2, NULL)
# largest municipalities in area per province
NLD_largest_muni <- aggregate_map(NLD_muni, by="province",
agg.fun = list(name="modal"), weights = "AREA")
sf::st_set_geometry(NLD_largest_muni, NULL)
}
# }
Run the code above in your browser using DataLab