library(tmle)
# Example 1. Estimating MSM parameter with correctly specified regression formulas
# MSM: psi0 + psi1*A + psi2*V + psi3*A*V (saturated)
# true parameter value: psi = (0, 1, -2, 0.5)
# generate data
set.seed(100)
n <- 1000
W <- matrix(rnorm(n*3), ncol = 3)
colnames(W) <- c("W1", "W2", "W3")
V <- rbinom(n, 1, 0.5)
A <- rbinom(n, 1, 0.5)
Y <- rbinom(n, 1, plogis(A - 2*V + 0.5*A*V))
result.ex1 <- tmleMSM(Y, A, W, V, MSM = "A*V", Qform = "Y~.", gform = "A~1",
hAVform = "A~1", family = "binomial")
print(result.ex1)
if (FALSE) {
# Example 2. Biased sampling from example 1 population
# (observations having V = 1 twice as likely to be included in the dataset
retain.ex2 <- sample(1:n, size = n/2, p = c(1/3 + 1/3*V))
wt.ex2 <- 1/(1/3 + 1/3*V)
result.ex2 <- tmleMSM(Y[retain.ex2], A[retain.ex2], W[retain.ex2,],
V[retain.ex2], MSM = "A*V", Qform = "Y~.", gform = "A~1",
hAVform = "A~1", family = "binomial",
obsWeight = wt.ex2[retain.ex2])
print(result.ex2)
# Example 3. Repeated measures data, two observations per id
# (e.g., crossover study design)
# MSM: psi0 + psi1*A + psi2*V + psi3*V^2 + psi4*T
# true parameter value: psi = (-2, 1, 0, -2, 0 )
# generate data in wide format (id, W1, Y(t), W2(t), V(t), A(t))
set.seed(10)
n <- 250
id <- rep(1:n)
W1 <- rbinom(n, 1, 0.5)
W2.1 <- rnorm(n)
W2.2 <- rnorm(n)
V.1 <- rnorm(n)
V.2 <- rnorm(n)
A.1 <- rbinom(n, 1, plogis(0.5 + 0.3 * W2.1))
A.2 <- 1-A.1
Y.1 <- -2 + A.1 - 2*V.1^2 + W2.1 + rnorm(n)
Y.2 <- -2 + A.2 - 2*V.2^2 + W2.2 + rnorm(n)
d <- data.frame(id, W1, W2=W2.1, W2.2, V=V.1, V.2, A=A.1, A.2, Y=Y.1, Y.2)
# change dataset from wide to long format
longd <- reshape(d,
varying = cbind(c(3, 5, 7, 9), c(4, 6, 8, 10)),
idvar = "id",
direction = "long",
timevar = "T",
new.row.names = NULL,
sep = "")
# misspecified model for initial Q, partial misspecification for g.
# V set to 2 for Q and g to save time, not recommended at this sample size
result.ex3 <- tmleMSM(Y = longd$Y, A = longd$A, W = longd[,c("W1", "W2")], V = longd$V,
T = longd$T, MSM = "A + V + I(V^2) + T", Qform = "Y ~ A + V", gform = "A ~ W2",
id = longd$id, V.Q=2, V.g=2)
print(result.ex3)
# Example 4: Introduce 20
# V set to 2 for Q and g to save time, not recommended at this sample size
Delta <- rbinom(nrow(longd), 1, 0.8)
result.ex4 <- tmleMSM(Y = longd$Y, A = longd$A, W = longd[,c("W1", "W2")], V = longd$V, T=longd$T,
Delta = Delta, MSM = "A + V + I(V^2) + T", Qform = "Y ~ A + V", gform = "A ~ W2",
g.Deltaform = "Delta ~ 1", id=longd$id, verbose = TRUE, V.Q=2, V.g=2)
print(result.ex4)
}
Run the code above in your browser using DataLab