powered by
Conv3d
NA input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)\)
NA filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kT , kH , kW)\)
NA optional bias tensor of shape \((\mbox{out\_channels})\). Default: None
NA the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
(sT, sH, sW)
NA implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
(padT, padH, padW)
NA the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1
(dT, dH, dW)
NA split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
Applies a 3D convolution over an input image composed of several input planes.
See ~torch.nn.Conv3d for details and output shape.
~torch.nn.Conv3d
.. include:: cudnn_deterministic.rst
# NOT RUN { if (torch_is_installed()) { # filters = torch_randn(c(33, 16, 3, 3, 3)) # inputs = torch_randn(c(20, 16, 50, 10, 20)) # nnf_conv3d(inputs, filters) } # }
Run the code above in your browser using DataLab