
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
nn_adaptive_max_pool2d(output_size, return_indices = FALSE)
the target output size of the image of the form H x W.
Can be a tuple (H, W)
or a single H for a square image H x H.
H and W can be either a int
, or None
which means the size will
be the same as that of the input.
if TRUE
, will return the indices along with the outputs.
Useful to pass to nn_max_unpool2d()
. Default: FALSE
if (torch_is_installed()) {
# target output size of 5x7
m <- nn_adaptive_max_pool2d(c(5, 7))
input <- torch_randn(1, 64, 8, 9)
output <- m(input)
# target output size of 7x7 (square)
m <- nn_adaptive_max_pool2d(7)
input <- torch_randn(1, 64, 10, 9)
output <- m(input)
}
Run the code above in your browser using DataLab