
MaxPool1d
.MaxPool1d
is not fully invertible, since the non-maximal values are lost.
MaxUnpool1d
takes in as input the output of MaxPool1d
including the indices of the maximal values and computes a partial inverse
in which all non-maximal values are set to zero.
nn_max_unpool1d(kernel_size, stride = NULL, padding = 0)
(int or tuple): Size of the max pooling window.
(int or tuple): Stride of the max pooling window.
It is set to kernel_size
by default.
(int or tuple): Padding that was added to the input
input
: the input Tensor to invert
indices
: the indices given out by nn_max_pool1d()
output_size
(optional): the targeted output size
Input:
Output: output_size
in the call operator
if (torch_is_installed()) {
pool <- nn_max_pool1d(2, stride = 2, return_indices = TRUE)
unpool <- nn_max_unpool1d(2, stride = 2)
input <- torch_tensor(array(1:8 / 1, dim = c(1, 1, 8)))
out <- pool(input)
unpool(out[[1]], out[[2]])
# Example showcasing the use of output_size
input <- torch_tensor(array(1:8 / 1, dim = c(1, 1, 8)))
out <- pool(input)
unpool(out[[1]], out[[2]], output_size = input$size())
unpool(out[[1]], out[[2]])
}
Run the code above in your browser using DataLab