powered by
For further details regarding the algorithm we refer to Decoupled Weight Decay Regularization
optim_ignite_adamw( params, lr = 0.001, betas = c(0.9, 0.999), eps = 1e-08, weight_decay = 0.01, amsgrad = FALSE )
(iterable): iterable of parameters to optimize or dicts defining parameter groups
(float, optional): learning rate (default: 1e-3)
(Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
Tuple[float, float]
(float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
(float, optional): weight decay (L2 penalty) (default: 0)
(boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: FALSE)
See OptimizerIgnite.
OptimizerIgnite
if (torch_is_installed()) { if (FALSE) { optimizer <- optim_ignite_adamw(model$parameters(), lr = 0.1) optimizer$zero_grad() loss_fn(model(input), target)$backward() optimizer$step() } }
Run the code above in your browser using DataLab