If set to FALSE, the layer will not learn an additive bias.
Default: TRUE
Shape
Input1: \((N, *, H_{in1})\) \(H_{in1}=\mbox{in1\_features}\) and
\(*\) means any number of additional dimensions. All but the last
dimension of the inputs should be the same.
Input2: \((N, *, H_{in2})\) where \(H_{in2}=\mbox{in2\_features}\).
Output: \((N, *, H_{out})\) where \(H_{out}=\mbox{out\_features}\)
and all but the last dimension are the same shape as the input.
Attributes
weight: the learnable weights of the module of shape
\((\mbox{out\_features}, \mbox{in1\_features}, \mbox{in2\_features})\).
The values are initialized from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\), where
\(k = \frac{1}{\mbox{in1\_features}}\)
bias: the learnable bias of the module of shape \((\mbox{out\_features})\).
If bias is TRUE, the values are initialized from
\(\mathcal{U}(-\sqrt{k}, \sqrt{k})\), where
\(k = \frac{1}{\mbox{in1\_features}}\)