Learn R Programming

torch (version 0.8.1)

nn_max_pool2d: MaxPool2D module

Description

Applies a 2D max pooling over an input signal composed of several input planes.

Usage

nn_max_pool2d(
  kernel_size,
  stride = NULL,
  padding = 0,
  dilation = 1,
  return_indices = FALSE,
  ceil_mode = FALSE
)

Arguments

kernel_size

the size of the window to take a max over

stride

the stride of the window. Default value is kernel_size

padding

implicit zero padding to be added on both sides

dilation

a parameter that controls the stride of elements in the window

return_indices

if TRUE, will return the max indices along with the outputs. Useful for nn_max_unpool2d() later.

ceil_mode

when TRUE, will use ceil instead of floor to compute the output shape

Shape

  • Input: \((N, C, H_{in}, W_{in})\)

  • Output: \((N, C, H_{out}, W_{out})\), where

$$ H_{out} = \left\lfloor\frac{H_{in} + 2 * \mbox{padding[0]} - \mbox{dilation[0]} \times (\mbox{kernel\_size[0]} - 1) - 1}{\mbox{stride[0]}} + 1\right\rfloor $$

$$ W_{out} = \left\lfloor\frac{W_{in} + 2 * \mbox{padding[1]} - \mbox{dilation[1]} \times (\mbox{kernel\_size[1]} - 1) - 1}{\mbox{stride[1]}} + 1\right\rfloor $$

Details

In the simplest case, the output value of the layer with input size \((N, C, H, W)\), output \((N, C, H_{out}, W_{out})\) and kernel_size \((kH, kW)\) can be precisely described as:

$$ \begin{array}{ll} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \mbox{input}(N_i, C_j, \mbox{stride[0]} \times h + m, \mbox{stride[1]} \times w + n) \end{array} $$

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

The parameters kernel_size, stride, padding, dilation can either be:

  • a single int -- in which case the same value is used for the height and width dimension

  • a tuple of two ints -- in which case, the first int is used for the height dimension, and the second int for the width dimension

Examples

Run this code
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_max_pool2d(3, stride = 2)
# pool of non-square window
m <- nn_max_pool2d(c(3, 2), stride = c(2, 1))
input <- torch_randn(20, 16, 50, 32)
output <- m(input)
}

Run the code above in your browser using DataLab