(iterable): iterable of parameters to optimize or lists defining
parameter groups
lr
(float, optional): learning rate (default: 1e-2)
etas
(Tuple(float, float), optional): pair of (etaminus, etaplis), that
are multiplicative increase and decrease factors
(default: (0.5, 1.2))
step_sizes
(vector(float, float), optional): a pair of minimal and
maximal allowed step sizes (default: (1e-6, 50))
Warning
If you need to move a model to GPU via $cuda(), please do so before
constructing optimizers for it. Parameters of a model after $cuda()
will be different objects from those before the call. In general, you
should make sure that the objects pointed to by model parameters subject
to optimization remain the same over the whole lifecycle of optimizer
creation and usage.