powered by
Conv1d
torch_conv1d( input, weight, bias = list(), stride = 1L, padding = 0L, dilation = 1L, groups = 1L )
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
NULL
the stride of the convolving kernel. Can be a single number or a one-element tuple (sW,). Default: 1
(sW,)
implicit paddings on both sides of the input. Can be a single number or a one-element tuple (padW,). Default: 0
(padW,)
the spacing between kernel elements. Can be a single number or a one-element tuple (dW,). Default: 1
(dW,)
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d() for details and output shape.
nn_conv1d()
if (torch_is_installed()) { filters = torch_randn(c(33, 16, 3)) inputs = torch_randn(c(20, 16, 50)) nnf_conv1d(inputs, filters) }
Run the code above in your browser using DataLab