powered by
Conv3d
torch_conv3d( input, weight, bias = list(), stride = 1L, padding = 0L, dilation = 1L, groups = 1L )
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)\)
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kT , kH , kW)\)
optional bias tensor of shape \((\mbox{out\_channels})\). Default: NULL
the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
(sT, sH, sW)
implicit paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
(padT, padH, padW)
the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1
(dT, dH, dW)
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
Applies a 3D convolution over an input image composed of several input planes.
See nn_conv3d() for details and output shape.
nn_conv3d()
if (torch_is_installed()) { # filters = torch_randn(c(33, 16, 3, 3, 3)) # inputs = torch_randn(c(20, 16, 50, 10, 20)) # nnf_conv3d(inputs, filters) }
Run the code above in your browser using DataLab