Usage
torch_randperm(
n,
dtype = torch_int64(),
layout = torch_strided(),
device = NULL,
requires_grad = FALSE
)
Arguments
- n
(int) the upper bound (exclusive)
- dtype
(torch.dtype
, optional) the desired data type of returned tensor. Default: torch_int64
.
- layout
(torch.layout
, optional) the desired layout of returned Tensor. Default: torch_strided
.
- device
(torch.device
, optional) the desired device of returned tensor. Default: if NULL
, uses the current device for the default tensor type (see torch_set_default_tensor_type
). device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.
randperm(n, out=NULL, dtype=torch.int64, layout=torch.strided, device=NULL, requires_grad=False) -> LongTensor
Returns a random permutation of integers from 0
to n - 1
.
Examples
Run this codeif (torch_is_installed()) {
torch_randperm(4)
}
Run the code above in your browser using DataLab